A verification framework for secure machine learning

Théophile Wallez

07/09/2020
Introduction

Situation:
- A server hold a machine learning model M
- A client hold an input x
- The client want to know $M(x)$

Problem: M and x should remain secret
Solution: Use PPML (Privacy-Preserving Machine Learning) techniques

Problem: Cryptographic implementations are often prone to bugs
Solution: Use software verification techniques
Introduction

Situation:

- A server hold a machine learning model M
- A client hold an input x
- The client want to know $M(x)$

Problem: M and x should remain secret
Introduction

Situation:
- A server hold a machine learning model M
- A client hold an input x
- The client want to know $M(x)$

Problem: M and x should remain secret
Solution: Use PPML (Privacy-Preserving Machine Learning) techniques
Introduction

Situation:

- A server holds a machine learning model M
- A client holds an input x
- The client wants to know $M(x)$

Problem: M and x should remain secret
Solution: Use PPML (Privacy-Preserving Machine Learning) techniques

Problem: Cryptographic implementations are often prone to bugs
Introduction

Situation:

- A server holds a machine learning model M
- A client holds an input x
- The client wants to know $M(x)$

Problem: M and x should remain secret
Solution: Use PPML (Privacy-Preserving Machine Learning) techniques

Problem: Cryptographic implementations are often prone to bugs
Solution: Use software verification techniques
Goal of this internship

Create a verified implementation in F* of the secure multiparty computation protocol \(\text{SPDZ}_{2k} \).
Table of Contents

Background
- Multiparty computation modulo 2^k
- SPD \mathbb{Z}_{2^k}
- F*

Architecture of this implementation

High-level specification

Low level spec

Conclusion
Multiparty computation modulo 2^k
Multiparty computation modulo 2^k: basic operations

<table>
<thead>
<tr>
<th>x</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>\cdots</th>
<th>x_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>y_1</td>
<td>y_2</td>
<td>y_3</td>
<td>\cdots</td>
<td>y_n</td>
</tr>
</tbody>
</table>
Multiparty computation modulo 2^k: basic operations

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>...</th>
<th>x_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y</td>
<td>y_1</td>
<td>y_2</td>
<td>y_3</td>
<td>...</td>
<td>y_n</td>
</tr>
<tr>
<td>$x + y$</td>
<td>$x_1 + y_1$</td>
<td>$x_2 + y_2$</td>
<td>$x_3 + y_3$</td>
<td>...</td>
<td>$x_n + y_n$</td>
</tr>
</tbody>
</table>
Multiparty computation modulo 2^k: basic operations

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>\cdots</th>
<th>x_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y</td>
<td>y_1</td>
<td>y_2</td>
<td>y_3</td>
<td>\cdots</td>
<td>y_n</td>
</tr>
<tr>
<td>$x + y$</td>
<td>$x_1 + y_1$</td>
<td>$x_2 + y_2$</td>
<td>$x_3 + y_3$</td>
<td>\cdots</td>
<td>$x_n + y_n$</td>
</tr>
<tr>
<td>cx</td>
<td>cx_1</td>
<td>cx_2</td>
<td>cx_3</td>
<td>\cdots</td>
<td>cx_n</td>
</tr>
</tbody>
</table>
Multiparty computation modulo 2^k: basic operations

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>\cdots</th>
<th>x_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td></td>
<td>y_1</td>
<td>y_2</td>
<td>y_3</td>
<td>\cdots</td>
<td>y_n</td>
</tr>
<tr>
<td>$x + y$</td>
<td>$x_1 + y_1$</td>
<td>$x_2 + y_2$</td>
<td>$x_3 + y_3$</td>
<td>\cdots</td>
<td>$x_n + y_n$</td>
<td></td>
</tr>
<tr>
<td>cx</td>
<td></td>
<td>cx_1</td>
<td>cx_2</td>
<td>cx_3</td>
<td>\cdots</td>
<td>cx_n</td>
</tr>
<tr>
<td>$c + x$</td>
<td>$c + x_1$</td>
<td>x_2</td>
<td>x_3</td>
<td>\cdots</td>
<td>x_n</td>
<td></td>
</tr>
</tbody>
</table>
Multiparty computation modulo 2^k: multiplication

How to compute shares for xy?
How to compute shares for xy?

Trick: use shares of random a, b, c such that $ab = c$.

\[
xy = (x - a)(y - b) + (y - b)a + (x - a)b + ab
\]
How to compute shares for xy?
Trick: use shares of random a, b, c such that $ab = c$.

$$xy = ((x - a) + a)((y - b) + b) = (x - a)(y - b) + (y - b)a + (x - a)b + ab$$
SPDZ_{2^k}, a rough idea

Problem: when opening x, an active adversary can lie about its share.
Problem: when opening x, an active adversary can lie about its share.

Solution:
- Use a random shared secret α (an authentication key)
- Compute $m_x := \alpha x$ along x
SPD\mathbb{Z}_{2^k}, a rough idea

Problem: when opening x, an active adversary can lie about its share.

Solution:
- Use a random shared secret α (an authentication key)
- Compute $m_x := \alpha x$ along x

If an adversary lies about its share of x, it has to lie about its share of m_x and therefore guess α.
A look at F*’s syntax
A look at F∗’s syntax

val add : int → int → int
let add x y = x + y
A look at F∗’s syntax

```ocaml
val add: int → int → int
let add x y = x + y

val map: (α → β) → list α → list β
let rec map f l =
  match l with
  | [] → []
  | h::t → (f h)::(map f t)
```
Refinement types

```plaintext
val index : list α → nat → α
let index l i = ...
```
Refinement types

```ocaml
val index : list α → nat → α
let index l i = ...

index [57;3;1000;42] 2
(* = 1000 *)
```
Val index : list $\alpha \rightarrow \text{nat} \rightarrow \alpha$

Let index l i = ...

Index [57;3;1000;42] 10

(* = ? *)
Refinement types

```ocaml
val index : l:list α → i:nat → α
let index l i = ...

index [57;3;1000;42] 10
(* = ? *)
```
Refinement types

```ocaml
val index : l:list \(\alpha \rightarrow i:\text{nat}\{i < \text{length } l\} \rightarrow \alpha\)
let index l i = ...

index [57;3;1000;42] 10
(* \rightarrow "Subtyping check failed" *)
```
Refinement types for proofs

```ocaml
cval index : l : list α → i : nat {i < length l} → α
define index l i =
...
```
Refinement types for proofs

```ocaml
val index : l:list α → i:nat{i < length l} → α
let index l i =
  (* Here we can use the fact that i < length l *)
...
```
Refinement types for proofs

val index : l:list α → i:nat{1+1 = 2} → α
let index l i =
 (* Here we can use the fact that 1+1 = 2 *)
...

An instance of (){1+1=2} is a proof that 1+1=2.
Refinement types for proofs

```plaintext
val index: l:list α → i:nat{1+1 = 2} → α
let index l i =
  (* Here we can use the fact that 1+1 = 2 *)
  ...
```

An instance of (){1+1=2} is a proof that 1+1=2.
The Lemma effect

\[
\begin{align*}
\text{val append_length:} \\
\text{l1:list} \alpha \rightarrow \text{l2:list} \alpha \rightarrow \\
\text{()\{length (l1@l2) = length l1 + length l2\}}
\end{align*}
\]
The Lemma effect

val append_length: l1:list α → l2:list α →
Lemma ((length (l1@l2) = length l1 + length l2))
The Lemma effect

```plaintext
val append_length: l1:list α → l2:list α →
    Lemma ((length (l1@l2) = length l1 + length l2))
```

```plaintext
val append_eq_nil: l1:list α → l2:list α →
    Lemma (requires (l1@l2 == []))
    (ensures (l1 == [] ∧ l2 == []))
```
Table of Contents

Background

Architecture of this implementation
 Modules
 Types

High-level specification

Low level spec

Conclusion
Modules for this project

F*

High-level specification

Low*

Local point of view

Low-level specification

Local point of view

Low-level implementation

Global point of view
Types used in this project

<table>
<thead>
<tr>
<th>Unauthenticated</th>
<th>Local</th>
<th>Global</th>
</tr>
</thead>
<tbody>
<tr>
<td>elem k</td>
<td></td>
<td>shares n k</td>
</tr>
</tbody>
</table>
Types used in this project

<table>
<thead>
<tr>
<th></th>
<th>Local</th>
<th>Global</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unauthenticated</td>
<td>elem k</td>
<td>shares n k</td>
</tr>
<tr>
<td>Authenticated</td>
<td>auth_elem k s</td>
<td>auth_shares n k s</td>
</tr>
</tbody>
</table>
Table of Contents

Background

Architecture of this implementation

High-level specification
 Specification
 Correctness theorems

Low level spec

Conclusion
High-level specification

```plaintext
val add_shares_shares:
  auth_shares n k s → auth_shares n k s → auth_shares n k s
```
val combine_add_shares_shares_lemma:
 a:auth_shares n k s → b:auth_shares n k s →
 Lemma (∘
 (combine (add_shares_shares a b))
 = (combine a) +% (combine b)
)
High-level specification: correctness theorems

val combine_add_shares_shares_lemma:
 a:auth_shares n k s \rightarrow b:auth_shares n k s \rightarrow
 Lemma ((combine (add_shares_shares a b)) = (combine a) +% (combine b))

val auth_add_shares_shares_lemma:
 alpha:shares n s \rightarrow
 a:auth_shares n k s \rightarrow b:auth_shares n k s \rightarrow
 Lemma (requires authenticated alpha a \land authenticated alpha b)
 (ensures authenticated alpha (add_shares_shares a b))
Table of Contents

Background

Architecture of this implementation

High-level specification

Low level spec
 Representing communication
 Specification
 Correctness theorems

Conclusion
How to represent communication?

\[f: \]
- receives a local \(\alpha \)
- receives a \(\gamma \) from the network
- returns a \(\delta \)
How to represent communication?

\[
\text{f:}
\begin{align*}
\&\quad \text{receives a local } \alpha \\
\&\quad \text{receives a } \gamma \text{ from the network} \\
\&\quad \text{returns a } \delta
\end{align*}
\]

\[
\text{val f: } \alpha \rightarrow (\gamma \rightarrow \delta)
\]
How to represent communication?

\(f \):
- Receives a local \(\alpha \)
- Sends a \(\beta \) to the network
- Receives a \(\gamma \) from the network
- Returns a \(\delta \)
How to represent communication?

\[f: \]
- receives a local \(\alpha \)
- sends a \(\beta \) to the network
- receives a \(\gamma \) from the network
- returns a \(\delta \)

\[\text{val } f: \alpha \rightarrow (\beta \ast (\gamma \rightarrow \delta)) \]
The com datatype

define com (send:Type) (recv:Type) (ret:Type) = send * (recv → ret)

val open_share_dumb: elem k → com (elem k) (shares n k) (elem k)
let open_share_dumb x_share = (x_share, λ x_shares → List.fold_right (+%) x_shares 0)
The com datatype

```
val open_share_dumb: 
  elem k → com (elem k) (shares n k) (elem k) 
let open_share_dumb x_share = 
  (x_share, (λ x_shares → List.fold_right (+%) x_shares 0))
```
Low-level specification

```plaintext
val add_share_share:  
auth_elem k s → auth_elem k s → auth_elem k s
```
val add_share_share_correct:
 x:auth_shares n k s → y:auth_shares n k s → i:nat｛i<n｝→
 Lemma (
 add_share_share (List.index x i) (List.index y i)
 = List.index (add_shares_shares x y) i
)
The make_broadcast function

```ml
val make_broadcast : llist (com α (llist α n) γ) n → llist γ n
```
Low-level specification correctness theorems on communicating code

Definition:

```ml
val open_share_dumb : elem k → com (elem k) (shares n k) (elem k)
```

Definition:

```ml
val open_share_dumb_correct : x : shares n k → i : nat{i<n} →

Lemma ( 
  List.index ( 
    make_broadcast (List.map open_share_dumb x) 
  ) i 
  = List.fold_right (+%) x 0
)
```
Table of Contents

Background

Architecture of this implementation

High-level specification

Low level spec

Conclusion
I produced a verified functional implementation of the computing phase of the SPD\mathbb{Z}_{2^k} protocol.
I produced a verified functional implementation of the computing phase of the SPDZ_{2^k} protocol.

Future work:
- Low-level implementation in Low*
- Implementation of the preprocessing phase
- Privacy proofs