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The general context

Machine learning applications consume vast amounts of user data (including personally
identifiable information) to produce analytical models, which are subsequently used to assist
in making classification decisions on new data without human intervention. While machine
learning applications are getting more and more sophisticated, security and privacy issues in
this context have received lesser attention. In privacy preserving machine learning (PPML),
such a machine-learning classifier (server) should treat user queries opaquely, and should not
learn anything about the query issued by a client or its resulting response (i.e., the resulting
class). A client should only learn the correct response to its query and not learn anything
about the model parameters on the servers or about the data used to train the model.

One approach to address the privacy problem is through the design of sophisticated cryp-
tographic protocols, based on secure multi-party computation, homomorphic encryption, func-
tional encryption or garbled circuits. All these techniques are expensive, but recent advances
make them realizable. For example, the novel SPDZ2k [4] protocol allows efficient computa-
tions modulo 2k between several parties, using a less efficient preprocessing phase generating
correlated random numbers.

Implementation of cryptographic protocols can be subtle and bugs can be introduced at
different layers. The implementation might compute the wrong result (e.g. an arithmetic error
in the OpenSSL Poly1305 implementation [3]), there might be a memory vulnerability (e.g. a
buffer overflow in the OpenSSL Chacha20-Poly1305 implementation [1]) or information might
be leaked via side channels (e.g. the ECDSA nonces leaked in the cache in OpenSSL [9]).

Software verification can help to reduce the attack surface of such implementations. For
example, the proof assistant F∗ [6] has been used to build HACL∗ [10], a fully-verified and
efficient cryptographic library. HACL∗ is used inside production nowadays in Mozilla Firefox
and Wireguard, and is the basis of Everest [2], a project for a verified implementation for
HTTPS.
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The research problem

The design, implementation and analysis of protocols for PPML is an exciting new area of
research. However, none of the existing implementations are verified.

One of the core building blocks of recent proposals are MPC protocols [5]. We build the first
verified formal implementation of SPDZ2k and our goal is to prove its correctness and security
in F∗. Beyond PPML, we believe that this implementation is of stand-alone interest to any
sophisticated cryptographic application built using MPC that needs to replace a trusted third
party, including digital currency, encrypted databases, online auctions, and e-voting protocols
etc.

Your contribution

We build several components necessary for the implementation of the computation phase
of the SPDZ2k protocol. We first build a high-level specification of the protocol, describing
how the computation runs from a global point of view, and prove its correctness. We then
build a low-level specification of the protocol, describing how the computation runs from a
local point of view, and prove its correctness using the global specification.

In addition to the implementation of verified MPC, we also revisit the nature and scope
of the foundational definitions of PPML. One of our findings that we present here is that it is
difficult to get the definitions right in practice. We show how we can extract information from
an SVM model, even in a so called privacy preserving implementation, arguing for a different
notion of privacy in this context.

Arguments supporting its validity

We produced a concise and readable specification of the SPDZ2k protocol which can easily
be checked by a human, and proved that the result of the computations with SPDZ2k is
correct. The low-level specification can be extracted to OCaml and actually run on a computer,
therefore producing a reference implementation for the SPDZ2k protocol.

Summary and future work

In order to complete this work, we can write a low-level implementation in Low∗ [7], a low-
level subset of F∗ which can then be extracted to readable C code. The current implementation
can only be extracted to OCaml and is not designed to be efficient. The protocol is only proved
to be secure on the paper, a mechanized proof would be a nice addition, using ideas similar to
Dolev-Yao symbolic models or Wys∗ [8]. The SPDZ2k protocol has a preprocessing phase and
a computation phase, the preprocessing phase is currently not implemented.
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1 Background

1.1 F∗

F∗ [6] is a general-purpose functional programming language with effects aimed at program
verification. F∗’s type system includes dependent types, monadic effects, refinement types, and
a weakest precondition calculus. Together, these features allow expressing precise and compact
specifications for programs. Verification is fully automated using an SMT solver. F∗ programs
can be extracted to efficient OCaml, F#, C, WASM, or ASM code, which allows verifying the
functional correctness and security of realistic applications.

A refinement type is a type associated with a property which is true when there is an
instance of this type. For example, an object of the type n:nat{n%2 = 0} is an even natural
number. It allows to define precisely what conditions should meet the input of a function, for
example the function to get the ith element of a list:

val index: l:list α → i:nat{i < List.Tot.length l} →α

is a total function and the compiler verifies that the index passed is in bound.

Often, properties used in refinement types are related to the object of this type, but do
not have to necessarily. The type i:nat{i < List.Tot.length l} is a natural number along with a
property that it is less than List.Tot.length l, the type i:nat{1+1=2} is a natural number along
with a property that 1+1=2.

This way, we can define theorems as a refinement type on unit: an object of the type
(){1+1=2} is a theorem that 1+1=2.

As in Coq, types are theorems and instances of these types are proofs. However F∗ theorems
are not defined using the Curry-Howard isomorphism but with refinement types.

In F∗’s standard library, there are several basic datatypes.

Some types to represent numbers with various properties:

(∗ ‘int‘ represents an integer ∗)
assume new type int
(∗ ‘nat‘ represents a natural number ∗)
type nat = i:int{i ≥ 0}
(∗ ‘pos‘ represents a positive number ∗)
type pos = i:int{i > 0}

And the standard list and option types, along with a type for fixed-size lists.
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(∗ ‘option a‘ represents an optional value of type ‘a‘ ∗)
type option (a: Type) =
| None : option a
| Some : v: a → option a

(∗ ‘list a‘ represents a list of elements with types ‘a‘ ∗)
type list (a: Type) =
| Nil : list a
| Cons : hd: a → tl: list a → list a

(∗ ‘llist a n‘ represents a list of elements with type ‘a‘ and size ‘n‘ ∗)
let llist a (n:nat) = l:list a {length l = n}

The Lemma effect allows to write theorems in a more elegant way than using a refinement
on the unit type:

(∗ For all lists ‘l1‘, ‘l2‘, the length of the concatenation of ‘l1‘ and ‘l2‘ is
∗ equal to the sum of the lengths of ‘l1‘ and ‘l2‘ ∗)

val append_length:
l1:list α → l2:list α →
Lemma ((length (l1@l2) = length l1 + length l2))

(∗ For all lists ‘l1‘, ‘l2‘, if their concatenation is the empty list, then
∗ both of ‘l1‘ and ‘l2‘ are the empty list ∗)

val append_eq_nil:
l1:list α → l2:list α →
Lemma (requires (l1@l2 == []))

(ensures (l1 == [] ∧ l2 == []))

In F∗, since the proofs are written using an SMT solver, they can be really concise. In
fact, well-written proofs often consist of a few instantiations of some theorems from which it
is possible do deduce the final result. To save the programmer some work, some theorems are
automatically instantiated when a term matches some pattern during the proof.

For example, the theorem

val append_l_nil:
x:list α →
Lemma (requires >)

(ensures (x@[] == x))
[SMTPat (x@[])]

will be automatically instantiated every time a list is concatenated with the empty list.
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1.2 Secure multiparty computation, a rough idea

Suppose we have n parties P1, P2, . . . , Pn, and each party holds a value in Z2k (Pi holds
the value x(i)) and they want to compute the sum of their values

∑n
i=1 x

(i) without revealing
anything else about their values.

Here is one way to do this.

For each j, Pj splits its value into shares x(j)1 , x
(j)
2 , . . . , x

(j)
n such that

x(j) =

n∑
i=1

x
(j)
i

and sends x(j)i to Pi. One way to do this for Pj would be to choose x(j)1 , . . . , x
(j)
j−1, x

(j)
j+1, . . . , x

(j)
n

randomly, and compute
x
(j)
j = x(j) −

∑
i 6=j

x
(j)
i

, so that the values revealed to other parties are purely random and do not reveal any infor-
mation.

Subsequently, each party Pj computes

Sj =
n∑
i=1

x
(i)
j

and broadcasts this value to every party.

Now, each party can compute
n∑
j=1

Sj =

n∑
j=1

n∑
i=1

x
(i)
j =

n∑
i=1

n∑
j=1

x
(i)
j =

n∑
i=1

x(i)

Each party now knows the sum of x(i) without having to reveal their values. This protocol
is summarized in Figure 1.

This protocol is secure against n−1 passive adversaries. Without loss of generality, assume
we are P1. If there are exactly n− 1 passive adversaries, then they can deduce x(1) using the
result of the computation, and the protocol does not reveal more information. If there are less
than n− 1 passive adversaries, without loss of generality, P2 is not a passive adversary, then

S1 =

n∑
i=1

x
(i)
1 = x

(1)
1 + x

(2)
1 +

n∑
i=3

x
(i)
1

and since x(2)1 is purely random, the adversaries cannot deduce x(1) from the broadcasted
values.

This protocol is not secure against active adversaries: the adversaries can compromise
the computation by revealing garbage values, and n− 1 active adversaries can deduce x1, by
sending x(2)1 = x

(3)
1 = · · · = x

(n)
1 = 0 to P1 who will subsequently broadcast S1 = x

(1)
1 , and the

adversaries will be able to reconstruct x(1).
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Figure 1: Drawing of the multiparty sum protocol.

1.3 SPDZ2k

SPDZ2k [4] works in a similar way with some additional features, and is secure against
n− 1 active adversaries.

In the previous example, values are computed modulo 2k, in SPDZ2k we compute them
modulo 2k+s where s is a security parameter. There is a secret value α ∈ Z2s shared between
parties, called the MAC key. The MAC for a value x is given by mx := αx, is shared between
parties and computed at the same time as x. For example, mx+y is computed at the same
time as x+ y, using the equality mx+y = mx +my.

When opening the value x, if an active adversary lies about its share of x and mx and the
opened value is x′ 6= x with a MAC m′x, then it also needs to ensure that αx′ = m′x, which
gets harder as s grows since α is unknown and it has to guess the value of α(x′ − x).

If x, y are shared values and c is a public constant, then it is possible to compute authen-
ticated shares of x+ c, cx and x+ y locally without any communication.

For multiplication of two shares, more work is needed: SPDZ2k use shares computed in
a preprocessing phase to do multiplication of two shares. A multiplication triplet consists
of three authenticated shares of a, b, c such that a and b are random and c = ab. Then, by
noticing that

xy = ((x− a) + a)((y − b) + b) = (x− a)(y − b) + (y − b)a+ (x− a)b+ ab

we can open the values of x− a and y − b (which do not reveal any information since a and b
are random) and compute authenticated shares of xy by using the three elementary operations
on authenticated shares, since (x− a) and (y− b) are constants, and ab = c is a shared value.
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High-level specification

Low-level specification Low-level implementation

F∗ Low∗

Global
point of view

Local
point of view

Figure 2: Diagram showing the various parts of this verified implementation.

2 An approach for a secure, fully verified and efficient imple-
mentation of a cryptographic protocol

We follow an approach (shown in Figure 2) similar to HACL∗.

2.1 High-level specification

First, the protocol is described from a global point of view, by manipulating the state
of every party at the same time. This allows us to describe the protocol in a succinct way,
without bothering with some details such as communication (for example, opening a shared
value is easy, we just have to compute a sum of numbers). In this specification, the correctness
of the protocol is verified, for example the protocol to compute addition of two shared numbers
correctly produces shares for the sum of those numbers.

In this internship, the high-level specification was fully implemented and verified.

2.2 Low-level specification

Then, the protocol is described from a local point of view, by manipulating the state of
one party. We can see this as a functional implementation of the protocol. It means that we
can use it in the real world (e.g. by extracting it to OCaml) but it might be slow. Here, we
need to consider details such as communication. This specification is proved to correspond
to the high-level one. We can also prove its security, for example that secret values are not
leaked to the adversaries.

In this internship, the low-level specification was fully implemented and verified to corre-
spond to the high-level specification.
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2.3 Low-level implementation

The protocol is finally implemented in a fast imperative language. We prove that it is
equivalent to the low-level specification. We also prove that no conditions or memory accesses
depend on a secret, ensuring that it is resistant against cache and other timing attacks.

3 High-level specification

3.1 Datatypes

First, we define a type for elements of the Z2k semiring.

(∗ ‘elem k‘ is an element of Z_{2^k} ∗)
type elem (k:pos) = n:nat{n < pow2 k}

An element of Z2k is represented as a natural number less than 2k, canonically. It corresponds
to a machine unsigned integer on k bits on which operations can overflow.

Several operations are defined on numbers in Z2k .

(∗ Negation ∗)
val ( ¬% ): #k:pos → elem k → elem k
(∗ Addition ∗)
val ( +% ): #k:pos → elem k → elem k → elem k
(∗ Subtraction ∗)
val ( −% ): #k:pos → elem k → elem k → elem k
(∗ Multiplication ∗)
val ( ∗% ): #k:pos → elem k → elem k → elem k
(∗ Add bits ∗)
val upcast: #k:pos → k’:pos{k ≤ k’} → elem k → elem k’
(∗ Remove bits ∗)
val downcast: #k:pos → k’:pos{k’ ≤ k} → elem k → elem k’

For example, the negation takes an implicit parameter k corresponding to the number of
bits, takes an element of Z2k , and returns an element of Z2k . Sometimes, we need to extend
a number and add bits, or to truncate a number and remove bits: this is done with the
downcast and upcast functions. For example, the upcast functions takes an implicit parameter
k corresponding to the number of bits as input, takes a k’ greater than k corresponding to the
numbor of bits as output, takes an input on k bits, and returns an output on k’ bits.

Next, we define several datatypes representing the values in SPDZ2k .

An unauthenticated share with k bits of value and s bits of security is just an elem (k+s).
However for authenticated shares we need two numbers: the share of the value and the share
of the MAC. This is done in the following record type:
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(∗ ‘auth_elem k s‘ is an authenticated share with ‘k‘ bits of value and ‘s‘ bits of security ∗)
type auth_elem (k:pos) (s:nat) = {v:elem (k+s); m: elem (k+s)}

The shares of a value is a list of shares, with a length corresponding to the number of
parties. There are two versions, an un-authenticated one and an authenticated one.

(∗ ‘shares n k‘ represents the shares between ‘n‘ parties of an unauthenticated element of
∗ ‘k‘ bits ∗)

type shares (n:pos) (k:pos) = l:llist (elem k) n
(∗ ‘auth_shares n k s‘ represents the shares between ‘n‘ parties of an authenticated element
∗ with ‘k’ bits of value and ‘s‘ bits of security ∗)

type auth_shares (n:pos) (k:pos) (s:nat) = l:llist (auth_elem k s) n

To ease the use of multiplication triplet shares, a record type is defined, along with its
"list" version.

(∗ ‘multiplication_triplet k s‘ represents one share of a multiplication triplet with ‘k‘ bits of
∗ value and ‘s‘ bits of security ∗)

type multiplication_triplet (k:pos) (s:nat)={a:auth_elem k s; b:auth_elem k s; c:auth_elem k s}
(∗ ‘multiplication_triplet_shares n k s‘ represents the shares between ‘n‘ parties of a
∗ multiplication triplet ∗)

type multiplication_triplet_shares (n:pos) (k:pos) (s:nat) = l:llist (multiplication_triplet k s) n

3.2 Functional specification

Addition between two shared values looks like this:

val add_shares_shares: auth_shares n k s → auth_shares n k s → auth_shares n k s

This function takes the list of shares for x (of type auth_shares n k s), the list of shares for
y (of type auth_shares n k s), and returns the list of shares corresponding to x + y (of type
auth_shares n k s).

Some operations (such as the addition of a constant) depend on the choice of a non-
canonical party, which is passed as an argument.

val add_cst_shares:
party:nat{party < n} → shares n (k+s) →
elem (k+s) → auth_shares n k s → auth_shares n k s

This function takes the chosen party identity (a nat less than n), the list of shares for the MAC
key α (of type shares n (k+s) since α is not authenticated), the constant c (of type elem (k+s)),
the list of shares for x (of type auth_shares n k s), and returns the list of shares corresponding
to c+ x (of type auth_shares n k s).

The multiplication of two shared values takes an additional argument corresponding to the
multiplication triplet shares.
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val mul_shares_shares:
party:nat{party < n} → shares n (k+s) →multiplication_triplet_shares n k s →
auth_shares n k s → auth_shares n k s → auth_shares n k s

3.3 Correctness theorems

To write the correctness theorem, we use the following two helper functions:

val combine_auth_shares: auth_shares n k s → auth_elem k s
val authenticated: shares n (k+s) → auth_shares n k s → bool

The function combine_auth_shares takes the list of shares for x (of type auth_shares n k s)
and returns the reconstruction of the value and its MAC (of type auth_elem k s). The function
authenticated takes the list of shares for α (of type shares n (k+s) since α is not authenticated),
the list of shares for x (of type auth_shares n k s), and returns a boolean checking whether x
is correctly authenticated with respect to the key α.

This theorem ensures the correctness of the value produced by the add_shares_shares
protocol.

val combine_add_shares_shares_lemma:
a:auth_shares n k s → b:auth_shares n k s →
Lemma (

(combine_auth_shares (add_shares_shares a b)).v
= (combine_auth_shares a).v +% (combine_auth_shares b).v

)

We can read it as follows: for a list of authenticated shares a and a list of authenticated shares
b, the value associated with the shares given by the protocol add_shares_shares corresponds
to the sum of the value of a and the value of b.

The following theorem ensures the correctness of the MAC produced by the protocol
add_shares_shares:

val auth_add_shares_shares_lemma:
alpha:shares n (k+s) → a:auth_shares n k s → b:auth_shares n k s →
Lemma (requires authenticated alpha a ∧ authenticated alpha b)

(ensures authenticated alpha (add_shares_shares a b))

We can read it as follows: for a list of shares alpha, a list of authenticated shares a, and a list
of authenticated shares b, if a and b are correctly authenticated with respect to alpha, so are
the shares produced by the protocol add_shares_shares.

The correctness theorem for the multiplication protocol is a bit more complex.
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val combine_mul_shares_shares_lemma:
party:nat{party < n} → alpha:shares n (k+s) → triplet:multiplication_triplet_shares n k s →
x:auth_shares n k s → y:auth_shares n k s →
Lemma
(requires

let a_shares = triplet_shares_a triplet in
let b_shares = triplet_shares_b triplet in
let c_shares = triplet_shares_c triplet in
(combine_auth_shares a_shares).v ∗% (combine_auth_shares b_shares).v

= (combine_auth_shares c_shares).v
)
(ensures

(downcast k (combine_auth_shares (mul_shares_shares party alpha triplet x y)).v)
= (downcast k (combine_auth_shares x).v) ∗% (downcast k (combine_auth_shares y).v)

)

First, some assumption about the multiplication triplet is needed (which is that ab = c).
Second, the multiplication protocol correctly computes the multiplication on the k value bits,
but not on the s security bits! This is because inside the protocol, some values are opened and
their security bits are not revealed (as this might leak information). Actually, the theorem
about add_shares_shares is stronger than needed because we do not need to know that it also
computes the addition on the s security bits in order to be correct.

4 Low-level specification

4.1 Representing communication with the com datatype

Let’s see how to represent communication in a simple protocol. Two parties A and B hold
a value (a natural number). Party A sends its value to B, and party B sends its value to A.
Then, they both compute the sum of their values. In other words, each party sends its value
and then receives another value to compute its sum.

One way to implement it would be:

val example_add: nat → nat ∗ (nat → nat)
let example_add x =

(x, (λ y → x+y))

The function example_add returns a pair: the first element is its value, corresponding to the
data to send and the second element is a callback (or a continuation), which can be called
when the value from the other party is received.

This way of representing communication can be generalized and is implemented in the com
datatype:
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type com (send:Type) (recv:Type) (ret:Type) = send ∗ (recv → ret)

com send recv ret represents a function sending a value of type send and waiting on a value of
type recv to return a value of type ret. This communication is asynchronous.

A com type can be handled by the following imperative pseudo-code:

val com_resolve: com α β γ → γ
let com_resolve (value, cont) =

network_send value;
let x = network_receive () in
cont x

A simple example of communication on shares would be:

val open_share_dumb: auth_elem k s → com (elem k) (shares n k) (elem k)
let open_share_dumb x_share =
(x_share, (λ x_shares →

List.Tot.fold_right (+%) x_shares zero
))

This function broadcasts one share and gets back a list of shares (including its own), which is
used to reconstruct the shared value.

In SPDZ2k , the communication is mostly done in a way such that each party broadcasts a
value, therefore we use the following type:

type com_broadcast (n:pos) (ty:Type) (ret:Type) = com ty (llist ty n) ret

where a party sends a value of type ty, then receives n values of type ty corresponding to the
values sent by each party (including its own).

We can resolve a com_broadcast from a global point of view with the following function:

val make_broadcast: llist (com_broadcast n α γ) n → llist γ n

Briefly, it takes a list of parties waiting to broadcast an α to return a γ, and implements
broadcasting to return a list of γ corresponding to the result computed by each party.

A correctness theorem for the above open_share_dumb function might look like this:

val open_share_dumb_correct:
x:shares n k → i:nat{i<n} →
Lemma (

List.Pure.index (make_broadcast (List.Tot.map open_share_dumb x)) i
= List.Tot.fold_right (+%) x zero

)
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It says that if each party calls open_share_dumb on its share of x, and the broadcasting
is done, then each party holds the sum of the shares of x.

We notice that the com datatype is actually a functor and we can therefore use the following
function:

val fmap: (γ → δ) → com α β γ → com α β δ

Briefly, fmap takes a function of type γ → δ and applies it to the return value of the commu-
nication.

The following theorem is useful to handle the fmaps in the correctness proofs:

val make_broadcast_fmap:
f:(γ → δ) → x:llist (com α (llist α n) γ) n →
Lemma (make_broadcast (List.Tot.map (fmap f) x) == List.Tot.map f (make_broadcast x))

Briefly, it says that applying fmap f on a communication and resolving the communication is
the same as resolving the communication and applying f.

4.2 A false good idea: the coml datatype

When the protocol needs to communicate multiple times, we have to deal with types that
look like com a b (com c d (com e f g)) which are not convenient. I thought it would be a
good idea to write the list of send and receive types along with the return type, like this:
coml [(a,b); (c,d); (e,f)] g, using the following function on types:

val coml: list (Type ∗ Type) →Type →Type
let rec coml l ret =

match l with
| [] → ret
| (hs,hr)::t → com hs hr (coml t ret)

And since fmap can be used to nest communication (by specifying δ , its type could be
(c → com d e f) → com a b c → com a b (com d e f)), we can define a "nested fmap" function:

val fmapl: #l1:list (Type∗Type) →#l2:list (Type∗Type) →
(α → coml l2 β) → coml l1 α → (coml (l1@l2) β)

Even if on the paper it looks nice, in practice it was a terrible idea since F∗ had a lot of
trouble doing the type inference and in practice I spent more time dealing with the commu-
nication types than doing the actual proofs. I ended up removing coml and fmapl and things
worked a lot better.
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4.3 Functional specification

The protocol to add one share of two shared values is done using the following function:

val add_share_share: auth_elem k s → auth_elem k s → auth_elem k s

Since this protocol is done locally without any communication, it takes as arguments two
shares and returns a share.

The protocol to open a shared value has a more complex type:

val open_share: (elem (k+s) ∗ auth_elem k s ∗ auth_elem k s) →
com_broadcast n (elem (k+s)) (

com_broadcast n commitment_hidden (
com_broadcast n (commitment_reveal ∗ elem (k+s)) (

option (elem k)
)

)
)

It takes a share of the MAC key α, an authenticated share of a fresh random number r, and a
share of the value to open x. It does a bunch of communication and returns an option (elem k).
The reason for this return type is that the open protocol only reveals k-bits values, and the
protocol can fail if the MAC check failed (i.e. an active attacker is trying to compromise the
computation).

4.4 Correctness theorems

The correctness theorem for add_share_share looks like this:

val add_share_share_correct:
x:auth_shares n k s → y:auth_shares n k s → i:nat{i<n} →
Lemma (

add_share_share (List.Tot.index x i) (List.Tot.index y i)
= List.Tot.index (add_shares_shares x y) i

)

In other words, if the party i runs the protocol add_share_share with its shares of x and y
then it gets the same share as the one described in the global protocol (add_shares_shares).

The correctness theorem for open_share looks like this:

val open_share_correct:
alpha:shares n (k+s) → r:auth_shares n k s → x:auth_shares n k s → i:nat{i<n} →
Lemma (

let res = make_broadcast (make_broadcast (make_broadcast (
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List.Tot.map open_share (List.Pure.zip3 alpha r x)
))) in
match List.Pure.index res i with
| Some resi → resi == downcast k (combine_auth_shares x).v
| None →>

)

It is quite similar to the one for open_share_dumb, but with more communication to resolve
and an option to open.

5 Privacy-preserving machine learning, a wrong definition?

5.1 Preliminaries

The definition of PPML is that the server learns nothing about the input of the client, and
the client learns nothing about the model of the server except the classification result on its
input. But how much information can the client extract with this exception? We studied this
in the context of an SVM classifier.

Consider an SVM server who knows a matrix F and a vector b. A client can make the
request R(x) = argmaxi(Fx+ b)i. Using the result R, we explore how the client could extract
as much information as possible on F and b.

We can first notice that R is invariant under the scaling of F and b.

5.2 Compute the sorting permutation of Fr for any vector r

The general idea: fix a vector x, compute R(αr+x) for enough α and you can get a bunch
of inequalities like (Fr)i < (Fr)j . If you have enough inequalities you can compute the sorting
permutation. Otherwise you change x and compute a new set of inequalities, until you have
enough information to recover the sorting permutation.

In the rest of the section, x and r are fixed, and we use the abuse of notation: R(α) :=
R(αr + x).

Lets define hi(α) = (F (αr + x) + b)i. Then, R(α) = argmaxi hi(α). We can notice that
hi(α) = α(Fr)i + (Fx + b)i is actually an affine function. Hence for each y, {α | R(α) = y}
is an interval, and if α1 < α2 and R(α1) 6= R(α2) then (Fr)R(α1) < (Fr)R(α2) (which are the
slopes of the affine functions). We can easily see this on a drawing of affine functions.

Therefore, there exists α1 < α2 < · · · < αk and distinct y0, y1, . . . , yk such that

R(α) =


y0 if α < α1

y1 if α1 < α < α2

· · ·
yk if αk < α
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and (Fr)yi < (Fr)yi+1 .

Now we only need to compute this decomposition. Here is a way to do this:

• Find a lower-bound for α1 (e.g. compute R(−10k) for 0 < k < 10 and suppose α1 is not
too low)

• Find a good approximation of α1 using binary search (supposing you also know a higher
bound)

• Use the same process for α2 and so on

In fact to get the order, we do not need to know the αi precisely, it suffices to know
β0 < · · · < βk such that R(βi) = yi to have a proof that (Fr)yi < (Fr)yi+1 .

From a practical point of view, we might wonder two things: how many SVM queries do
we need to find the αi and yi for a given x, and how much information it exposes. In Figure 3,
we can see a histogram of the number of queries made to the SVM to get the αi and yi for
a given x. This is a multimodal distribution and the different modes actually correspond to
the number of reconstructed yi. We see that we need about 100 queries per iteration. In
Figure 4, we plot the percentage of knowledge we have about the sorting permutation of Fr,
as a function of the number of tested x. Each x gives some relation (Fr)yi < (Fr)yi+1 and we
compute the transitive closure of these relations to get the percentage of knowledge we have
about the sorting permutation of Fr. This can be seen as the percentage of (i,j) for which we
know the relationship between (Fr)i and (Fr)j . We see that we need about 50 iterations to
have 10% of knowledge, about 2000 iterations to have 50% of knowledge and 107 iterations
gives about 90% of knowledge.
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Figure 3: Number of queries to the SVM to reconstruct an R(α) function for a given x.

5.3 A simple usage of this first construction

If rj is a vector such that

rji =

{
1 if i = j

0 otherwise
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Figure 4: Evolution of the fraction of known value of (Fr)i < (Fr)j in function of the number
of random x vector tested, on several random SVM models.

then (Frj)i = fi,j , so the previous construction gives the sorting permutation of every column
of F .

5.4 A more advanced usage

If rj,k,α is a vector such that

rj,k,αi =


1 if i = j

α if i = k

0 otherwise

then (Frj,k,α)i = fi,j + αfi,k, which is an affine function in α.

Fix some a, b, for every α with the construction you can know if (Frj,k,α)a < (Frj,k,α)b. If
fa,k 6= fb,k then you can find αa,b such that (Frj,k,αa,b)a = (Frj,k,αa,b)b (using binary search).

From this equality, you can deduce fa,j−fb,j = αa,b(fb,k−fa,k). It means that if you know
a column well, you can have a lot of information on the other columns.

Note that in this usage we do not need to know exactly the sorting permutation of (Frj,k,α),
knowing a lot of inequalities might be sufficient.

I tried to generalize this usage with two parameters: rj,k,l,α,β but that didn’t give anything
interesting.
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6 Future work

6.1 Security proofs

The protocol implementation is currently proved to be correct, but not proved to be secure
(although the SPDZ2k paper [4] proves its security by hand). We could use some variant of the
Dolev-Yao model, or Wys∗ [8], a DSL that models MPC protocols in F∗, to prove its security
formally.

6.2 Low-level implementation

The low-level specification can be extracted to a functional language such as OCaml but
this implementation might be slow. A low-level implementation could be written in Low∗ [7],
a subset of F∗ that is memory-safe and can be extracted to readable C code.

6.3 Implementation of the preprocessing phase

The SPDZ2k protocol depends on the preprocessing of correlated random numbers, to
authenticate new values and to multiply two shared values. This is done using an oblivious
transfer protocol, and could be implemented as future work.

7 Conclusion

During this internship, I learned to use F∗ and used it to implement a part of a novel MPC
protocol.

Previously, I had some experience with tactic-based provers such as Coq or HOL4. It was
interesting to learn F∗ with its SMT-based proofs, which were a lot different than my previous
experience with theorem provers. In the end, once I found the right definition and the right
theorem statements, the proofs could be very short, so the proof files looked at lot cleaner
than Coq or HOL4 proofs.

This internship was not done in the best conditions: during the confinement and a work-at-
home situation, and I managed to break my leg the first week after the confinement. Hopefully,
I had the chance to have accommodating supervisors and roommates so this internship went
well.

During this internship, I realized that an internship is not only about thinking hard with
your brain and hammering a keyboard with your fingers, but also discovering new people,
chatting during a coffee break or during lunch. I missed the social aspect of the internship.
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