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Motivation for a new algorithm

CakeML currently uses the iterated register coalescing

algorithm [GA96]

It produces good code quality, but is slow: it is the slowest part of
the compiler

Solution: the linear scan algorithm [PS99]
Orders of magnitude faster, only slightly worse code quality
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Q: When can we allocate two register to the same color?

Al: When they never hold a useful value at the same time in the
program

Definition: a register lives at a point of the program iff its value is
useful

A2: When they never live at the same time



Linear scan: liveness analysis

0 /* Live = {} */
a< ...
1 /* Live = {a} */
b+ ...
2 /* Live = {a,b} */
if ...
3 /* Live = {b} */
c+b
4 /* Live = {c} */
else:
5 /* Live = {a} */
c<a
6 /* Live = {c} */
7 /* Live = {c} */
print(c)

8 /* Live = {} */




Linear scan: liveness analysis

0
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/* Live = {}
a< ...
/* Live = {a}

b+ ...

/* Live = {a,b}
if ...

/* Live = {b}
c+b

/* Live = {c}
else:

/* Live = {a}
c<«a

/* Live = {c}
/* Live = {c}
print(c)

/* Live = {}

*/

*/

*/

*/
*/

*/

Live(a) = {1,2,5} C [1,5]
Live(b) = {2,3} C [2,3]
Live(c) = {4,6,7} C [4,7]
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Setup of the current register allocator

clash _tree =
Delta (num list) (num list)
| Set num _set
| Branch (num _set option) clash _tree clash _tree
| Seq clash _tree clash tree

get live backward ct (Delta writes reads) live =
(live \ writes) U reads
get live backward ct (Set cutset) live = cutset

get live backward ct (Branch (Some cutset) ct; cts) live = cutset

get live backward ct (Branch None ct) cty) live =

(get_live backward ct cty live) U (get live backward ct cty live)

get live backward ct (Seq ct) ctp) live =
get live backward ct ct; (get live backward ct cty live)

check clash tree col clashtree
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Meet the live tree datatype

live tree =
Writes (num list) Transformation done by
| Reads (num list) get live tree

| Branch live _tree live tree
| Seq live tree live tree

get live backward (Writes wr) live =
live \ wr
get live backward (Reads rd) live =
live U rd
get live backward (Branch ct; cty) live =
(get_live backward ct; live) U (get live backward cty live)
get live backward (Seq ct; cto) live =
get live backward ct; (get live backward cty live)

check live tree col livetree
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Correctness theorem of get live tree

Theorem
check live tree col (get live tree clashtree) =
check clash tree col clashtree

Proof.

By induction on clashtree, and using the lemmas:
get live backward ct clashtree live C

get live backward (get live tree clashtree) live
and

live; C liveg =
get live backward clashtree live; C get live backward clashtree live;
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Liveness intervals: a faster algorithm

Insight: liveness interval start at a Writes and ends at a Reads

Fast algorithm:
» Beginning of interval of reg is the first line where reg is

written to

» End of interval of reg is the last line where reg is read
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Liveness intervals: a problem?

if ...
1]
else: Live(a) = [2, 3]
2 ‘ write (a)
3 read (a)
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Liveness intervals: a property on programs

Every read must be dominated by a write

Equivalentely,
get live backward livetree () = ()

Not easy to prove. A brutal solution is:

fix_domination /t =
let live = get live backward /t 0) in
if live = () then [t
else Seq (Writes (list_to numset live)) It

(* TODO: might be Q(n?) *)
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Liveness intervals: proof of correctness
A problem?
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write(c)
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Liveness intervals: proof of correctness
A problem?

Problem: what we want to prove is not true locally

Solution: Force the following property at every step:
If ais live, then beg[a] =7
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A modified algorithm
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Liveness intervals: proof of correctness

Prove that the two algorithm compute the same thing

Problem: The modified algorithm is easy to prove correct, but is
slow

Solution: Prove that the original and the modified algorithm
compute the same thing

Theorem

(begmod][r] # 7 and beg[r] # ?) = beg[r] = begmod]|r]
Theorem

begmod[r] # 7 = beg]r] #?

Theorem

beg[r] # ? = end[r] #?

Theorem
end[r] # 7 = (begmod|r] # ?orr is live)
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Additional requirements for CakeML's register allocator

» Some type of register must be allocated on the stack

Simply spill them automatically
» Stack frame size should be minimized
Do a second pass to reallocate registers on the stack
» Some pair of registers should have the same color (if possible)

Check these colors first in the colorpool when allocating the second
register

» Some pair of registers must not have the same color

Remove these colors from the colorpool when allocating the second
register
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Correctness proof for the linear scan algorithm

» Algorithm split in 16 elementary function

» 20 invariants preserved during the execution

Each correctness theorem is of the form:

if
» [some condition on the input]

» invariants are verified before calling the function

then
» the functions succeeds (i.e. no array out-of-bounds)
> [some property on the output]
» invariants are verified after calling the function

» [specify which colors might have changed]
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Performance: compilation time
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Not that bad, but we would hope better.
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Performance: generated code speed
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This is really bad.



Performance: generated code speed
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Performance: generated code speed

linear scan XXX

IRC

simple EE55)
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qsort Queye Teverse  SPtree contaj
~ i
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foldy
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dummy

an "ay‘conzab,f,{‘-'ontainb tree

This is really bad.

The culprit: physical registers have absurdly long liveness intervals

Solution: place the allocator before calling conventions are enforced



Conclusion

| implemented and verified end-to-end a new register allocator,
which might become the default allocator in CakeML.

There is still some work to do to make it useful.
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