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ClosLang:
last language
with closures
(has multi-arg

closures)

Infer types, exit if fail
 
Introduce globals vars,
eliminate modules &
replace constructor 
names with numbers
 
Make patterns exhaustive
 

Compile pattern matches
to nested Ifs and Lets
 
 Implement bounds checks
 
 

Track where closure values
flow; annotate program

Fuse function calls/apps
into multi-arg calls/apps
 
 

Introduce C-style fast
calls wherever possible

Remove deadcode

Prepare for closure conv.

Perform closure conv.

Inline small functions

Fold constants and
shrink Lets

Split over-sized functions
into many small functions

Compile global vars into a
dynamically resized array

Optimise Let-expressions

Switch to imperative style

Remove deadcode

Combine adjacent
memory allocations

Remove data abstraction

Simplify program

Select target instructions

Perform SSA-like renaming

Force two-reg code (if req.)

 

Reduce caller-saved vars

Allocate register names

Concretise stack

Implement GC primitive

Turn stack access into
memory acceses

Rename registers to match
arch registers/conventions
 
Flatten code

Delete no-ops (Tick, Skip)

Encode program as
concrete machine code
 

BVL: 
functional
language 
without
closures

DataLang:
imperative
language

WordLang:
imperative

language with
machine words,

memory and
a GC primitive

StackLang:
imperative
language 

with array-like 
stack and

optional GC

LabLang:
assembly lang.

ARMv6

ARMv8 x86-64 MIPS-64 RISC-V

All languages communicate with the external world
via a byte-array-based foreign-function interface.

Move nullary constructor 
patterns upwards
 

Make some functions tail-
recursive using an acc.

BVI:
one global

variable

FlatLang:
a language for 
compiling away 

high-level
lang. features

Global dead code elim. 
 
Turn tuples into construtors
 

This internship



Compiler transformations
 

 

source syntax

source AST

LanguagesValues

Parse concrete syntax
 

 

a
b
st

ra
ct

 v
a
lu

e
s 

in
cl

. 
cl

o
su

re
s 

a
n

d
 r

e
f 

p
o
in

te
rs

 

a
b
st

ra
ct

 v
a
lu

e
s 

in
cl

. 
re

f 
a
n

d
 c

o
d
e
 p

o
in

te
rs

 
m

a
ch

in
e
 w

o
rd

s 
a
n
d
 c

o
d
e
 l
a
b
e
ls

 

6
4

-b
it

  
 w

o
rd

s
 

no pat. match

3
2

-b
it

 w
o
rd

s
 

ClosLang:
last language
with closures
(has multi-arg

closures)

Infer types, exit if fail
 
Introduce globals vars,
eliminate modules &
replace constructor 
names with numbers
 
Make patterns exhaustive
 

Compile pattern matches
to nested Ifs and Lets
 
 Implement bounds checks
 
 

Track where closure values
flow; annotate program

Fuse function calls/apps
into multi-arg calls/apps
 
 

Introduce C-style fast
calls wherever possible

Remove deadcode

Prepare for closure conv.

Perform closure conv.

Inline small functions

Fold constants and
shrink Lets

Split over-sized functions
into many small functions

Compile global vars into a
dynamically resized array

Optimise Let-expressions

Switch to imperative style

Remove deadcode

Combine adjacent
memory allocations

Remove data abstraction

Simplify program

Select target instructions

Perform SSA-like renaming

Force two-reg code (if req.)

 

Reduce caller-saved vars

Allocate register names

Concretise stack

Implement GC primitive

Turn stack access into
memory acceses

Rename registers to match
arch registers/conventions
 
Flatten code

Delete no-ops (Tick, Skip)

Encode program as
concrete machine code
 

BVL: 
functional
language 
without
closures

DataLang:
imperative
language

WordLang:
imperative

language with
machine words,

memory and
a GC primitive

StackLang:
imperative
language 

with array-like 
stack and

optional GC

LabLang:
assembly lang.

ARMv6

ARMv8 x86-64 MIPS-64 RISC-V

All languages communicate with the external world
via a byte-array-based foreign-function interface.

Move nullary constructor 
patterns upwards
 

Make some functions tail-
recursive using an acc.

BVI:
one global

variable

FlatLang:
a language for 
compiling away 

high-level
lang. features

Global dead code elim. 
 
Turn tuples into construtors
 

 

Remove deadcode

Simplify program

Select target instructions

Perform SSA-like renaming

Force two-reg code (if req.)

Allocate register names

WordLang:
imperative

language with
machine words,

memory and
a GC primitive

This internship



Compiler transformations
 

 

source syntax

source AST

LanguagesValues

Parse concrete syntax
 

 

a
b
st

ra
ct

 v
a
lu

e
s 

in
cl

. 
cl

o
su

re
s 

a
n

d
 r

e
f 

p
o
in

te
rs

 

a
b
st

ra
ct

 v
a
lu

e
s 

in
cl

. 
re

f 
a
n

d
 c

o
d
e
 p

o
in

te
rs

 
m

a
ch

in
e
 w

o
rd

s 
a
n
d
 c

o
d
e
 l
a
b
e
ls

 

6
4

-b
it

  
 w

o
rd

s
 

no pat. match

3
2

-b
it

 w
o
rd

s
 

ClosLang:
last language
with closures
(has multi-arg

closures)

Infer types, exit if fail
 
Introduce globals vars,
eliminate modules &
replace constructor 
names with numbers
 
Make patterns exhaustive
 

Compile pattern matches
to nested Ifs and Lets
 
 Implement bounds checks
 
 

Track where closure values
flow; annotate program

Fuse function calls/apps
into multi-arg calls/apps
 
 

Introduce C-style fast
calls wherever possible

Remove deadcode

Prepare for closure conv.

Perform closure conv.

Inline small functions

Fold constants and
shrink Lets

Split over-sized functions
into many small functions

Compile global vars into a
dynamically resized array

Optimise Let-expressions

Switch to imperative style

Remove deadcode

Combine adjacent
memory allocations

Remove data abstraction

Simplify program

Select target instructions

Perform SSA-like renaming

Force two-reg code (if req.)

 

Reduce caller-saved vars

Allocate register names

Concretise stack

Implement GC primitive

Turn stack access into
memory acceses

Rename registers to match
arch registers/conventions
 
Flatten code

Delete no-ops (Tick, Skip)

Encode program as
concrete machine code
 

BVL: 
functional
language 
without
closures

DataLang:
imperative
language

WordLang:
imperative

language with
machine words,

memory and
a GC primitive

StackLang:
imperative
language 

with array-like 
stack and

optional GC

LabLang:
assembly lang.

ARMv6

ARMv8 x86-64 MIPS-64 RISC-V

All languages communicate with the external world
via a byte-array-based foreign-function interface.

Move nullary constructor 
patterns upwards
 

Make some functions tail-
recursive using an acc.

BVI:
one global

variable

FlatLang:
a language for 
compiling away 

high-level
lang. features

Global dead code elim. 
 
Turn tuples into construtors
 

 

Remove deadcode

Simplify program

Select target instructions

Perform SSA-like renaming

Force two-reg code (if req.)

Allocate register names

WordLang:
imperative

language with
machine words,

memory and
a GC primitive

This internship



What is register allocation

Model used for
optimisations:
infinite number of
registers

Register allocation−−−−−−−−−−−→

Reality:
small number of fast
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infinite number of
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Motivation for a new algorithm

CakeML currently uses the iterated register coalescing
algorithm [GA96]

It produces good code quality, but is slow: it is the slowest part of
the compiler

Solution: the linear scan algorithm [PS99]
Orders of magnitude faster, only slightly worse code quality
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Linear scan: liveness analysis

Q: When can we allocate two register to the same color?

A When they never hold a useful value at the same time in the
program

Definition: a register lives at a point of the program iff its value is
useful
A2: When they never live at the same time
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Linear scan: liveness analysis

Q: When can we allocate two register to the same color?

A1: When they never hold a useful value at the same time in the
program

Definition: a register lives at a point of the program iff its value is
useful
A2: When they never live at the same time



Linear scan: liveness analysis

0 /* Live = {} */
a← . . .

1 /* Live = {a} */
b← . . .

2 /* Live = {a, b} */
if . . . :

3 /* Live = {b} */
c← b

4 /* Live = {c} */
else:

5 /* Live = {a} */
c← a

6 /* Live = {c} */
7 /* Live = {c} */
print(c)

8 /* Live = {} */

Live(a) = {1, 2, 5} ⊂ [1, 5]
Live(b) = {2, 3} ⊂ [2, 3]
Live(c) = {4, 6, 7} ⊂ [4, 7]
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0 /* Live = {} */
a← . . .

1 /* Live = {a} */
b← . . .

2 /* Live = {a, b} */
if . . . :

3 /* Live = {b} */
c← b

4 /* Live = {c} */
else:

5 /* Live = {a} */
c← a

6 /* Live = {c} */
7 /* Live = {c} */
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8 /* Live = {} */
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Setup of the current register allocator

clash_tree =
Delta (num list) (num list)
| Set num_set
| Branch (num_set option) clash_tree clash_tree
| Seq clash_tree clash_tree

get_live_backward_ct (Delta writes reads) live =
(live \ writes) ∪ reads

get_live_backward_ct (Set cutset) live = cutset
get_live_backward_ct (Branch (Some cutset) ct1 ct2) live = cutset
get_live_backward_ct (Branch None ct1 ct2) live =

(get_live_backward_ct ct1 live) ∪ (get_live_backward_ct ct2 live)
get_live_backward_ct (Seq ct1 ct2) live =
get_live_backward_ct ct1 (get_live_backward_ct ct2 live)

check_clash_tree col clashtree
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Meet the live_tree datatype

live_tree =
Writes (num list)
| Reads (num list)
| Branch live_tree live_tree
| Seq live_tree live_tree

Transformation done by
get_live_tree

get_live_backward (Writes wr) live =
live \ wr

get_live_backward (Reads rd) live =
live ∪ rd

get_live_backward (Branch ct1 ct2) live =
(get_live_backward ct1 live) ∪ (get_live_backward ct2 live)

get_live_backward (Seq ct1 ct2) live =
get_live_backward ct1 (get_live_backward ct2 live)
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Correctness theorem of get_live_tree

Theorem
check_live_tree col (get_live_tree clashtree) ⇒
check_clash_tree col clashtree

Proof.
By induction on clashtree, and using the lemmas:

get_live_backward_ct clashtree live ⊆
get_live_backward (get_live_tree clashtree) live

and

live1 ⊆ live2 ⇒
get_live_backward clashtree live1 ⊆ get_live_backward clashtree live2
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Liveness intervals: naive algorithm

Naive algorithm: compute living sets at each position of the
program, then compute the intervals.

Problem: it might be Ω(n2)
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Liveness intervals: a faster algorithm

Insight: liveness interval start at a Writes and ends at a Reads

Fast algorithm:
I Beginning of interval of reg is the first line where reg is

written to
I End of interval of reg is the last line where reg is read
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Liveness intervals: a problem?

1 read (a) Live(a) = [?, 1]
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if . . . :
1 . . .

else:
2 write (a)
3 read (a)

Live(a) = [2, 3]



Liveness intervals: a property on programs

Every read must be dominated by a write

Equivalentely,
get_live_backward livetree ∅ = ∅

Not easy to prove. A brutal solution is:

fix_domination lt =
let live = get_live_backward lt ∅ in
if live = ∅ then lt
else Seq (Writes (list_to_numset live)) lt

(* TODO: might be Ω(n2) *)
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Liveness intervals: proof of correctness
A problem?

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [?, ?]
Live(b) = [?, ?]
Live(c) = [?, ?]
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Liveness intervals: proof of correctness
A problem?

Problem: what we want to prove is not true locally

Solution: Force the following property at every step:
If a is live, then beg[a] = ?
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Liveness intervals: proof of correctness
A modified algorithm

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [?, ?]
Live(b) = [?, ?]
Live(c) = [?, ?]
? = 11



Liveness intervals: proof of correctness
A modified algorithm

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [?, ?]
Live(b) = [10, 10]
Live(c) = [?, ?]
? = 10



Liveness intervals: proof of correctness
A modified algorithm

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [?, ?]
Live(b) = [10, 10]
Live(c) = [?, 9]
? = 9



Liveness intervals: proof of correctness
A modified algorithm

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [?, ?]
Live(b) = [?, 10]
Live(c) = [?, 9]
? = 8



Liveness intervals: proof of correctness
A modified algorithm

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [?, 7]
Live(b) = [?, 10]
Live(c) = [?, 9]
? = 7



Liveness intervals: proof of correctness
A modified algorithm

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [?, 7]
Live(b) = [6, 10]
Live(c) = [?, 9]
? = 6



Liveness intervals: proof of correctness
A modified algorithm

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [5, 7]
Live(b) = [6, 10]
Live(c) = [?, 9]
? = 5



Liveness intervals: proof of correctness
A modified algorithm

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [?, 7]
Live(b) = [?, 10]
Live(c) = [?, 9]
? = 5



Liveness intervals: proof of correctness
A modified algorithm

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [?, 7]
Live(b) = [?, 10]
Live(c) = [4, 9]
? = 4



Liveness intervals: proof of correctness
A modified algorithm

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [?, 7]
Live(b) = [3, 10]
Live(c) = [4, 9]
? = 3



Liveness intervals: proof of correctness
A modified algorithm

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [?, 7]
Live(b) = [3, 10]
Live(c) = [?, 9]
? = 3



Liveness intervals: proof of correctness
A modified algorithm

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [?, 7]
Live(b) = [3, 10]
Live(c) = [2, 9]
? = 2



Liveness intervals: proof of correctness
A modified algorithm

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [1, 7]
Live(b) = [3, 10]
Live(c) = [2, 9]
? = 1



Liveness intervals: proof of correctness
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Simply spill them automatically
I Stack frame size should be minimized

Do a second pass to reallocate registers on the stack
I Some pair of registers should have the same color (if possible)

Check these colors first in the colorpool when allocating the second
register
I Some pair of registers must not have the same color

Remove these colors from the colorpool when allocating the second
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Correctness proof for the linear scan algorithm

I Algorithm split in 16 elementary function
I 20 invariants preserved during the execution

Each correctness theorem is of the form:

if

I [some condition on the input]
I invariants are verified before calling the function

then
I the functions succeeds (i.e. no array out-of-bounds)
I [some property on the output]
I invariants are verified after calling the function
I [specify which colors might have changed]
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Conclusion

I implemented and verified end-to-end a new register allocator,
which might become the default allocator in CakeML.

There is still some work to do to make it useful.
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