Faster CakeML compilation with a
verified linear scan register allocator

Théophile Wallez
04/09/2018

CHALMERS

CAKEML

A Verified Implementation of ML

Valves

Languages

abstract values incl. closures and ref pointers

abstract values incl.
ref and code pointers

machine words and code labels

6a-bit 32-bit
words words

Compiler ranstormations

Parse concrete syntax
Infer types, exit i fal
Introduce globals vars,
eliminate modules &
fepiace consiruclor

ames with numbers

Make patterns exhaustive.
Global dead code elim.
Tur tuples into construtors

Move nullary constructor
patierns upwards

Compile pattern matches

1o nested lis and Lets

Implement bounds checks
ion cals/apps.

into mult-arg cals/apps
Track where closure values

Introduce C-style fast
Galls wherever possible

Remove deadcode
Prepare for closure conv.
Perform closure con.
Inline small functons

Foldconstant and

spit wev-sm funcions
o many small functions

compn» fobal vars it a
dynamicaly resized anay

Opiimiso Let-expressions

Mako somo funcions i
recursive using an

Switeh to imperative style
Reduce callorsaved vars

‘Simply program
Select target insiructions
Perform SSAike renarming
Force two-req code (il req.)
Remove deadcode
Alocate register names
Goncretise stack
Implement GC primitive

Tur stack access into
memory acceses.

Rename registers to match
arch registors/conventons.

Fiatten code
Delete no-ops (Tick, Skip)

Encode program as
Goncreta machine code

iages communicate with the external world

Allangu
via a byte-aray-based

Toreign-funclion interlace.

Heitang Make patterns exhaustive.
iage for
compiing away Global dead code elim
igrvievel “Turn tuples into construtors.
lang. features.

Move nullary constructor
patierns upwards

Compile pattern matches
1o nested lis and Lets

Implement bounds checks

ion calls/apps.
into mult-arg cals/apps

o pat. match

GlosLang iack wherecosure alues

lastlanguage flow; annalate p

with closures Invodico Gl ot

(has muli-arg calls wherever passible
sl Remove deadcode

Prepare for closure conv.

abstract values incl. closures and ref pointers

Perform closure con.
Inline small functons

Fold constants and
Shink Lats

Spit over-sized functions.
into many small functions

Gompile global vars nto a
dynamically resized array

Opiimiso Let-expressions

Make some funcions tail
FecUrSive Lsing an acc.

Switeh to imperative style
Reduce callorsaved vars

Gombine adjacnt
memory allocations

\)\) AVAVAVR AV EVEVEVAVAVAVAVAVAVIRRVAVAY/

abstract values incl.
ref and code pointers

‘Simpify program
Select target instructions

Perform SSAike renarming
Force two-req code (il req.)

GG primitve Remove deadcode

WordLang:
imperative
language with

machine words,
memory and
a GC primitive

\VAVAVAVAVAV/

Simplify program

Select target instructions
Perform SSA-like renaming
Force two-reg code (if req.)
Remove deadcode

Allocate register names

StackLang Implement GC primitive

Tur stack access into
memory acceses.

Rename registers to match
arch registors/conventons.

Fiatten code

optional GC

>
>
-~
>
>
> Alocate ragternames
g
=
g
>
<

Delete no-ops (Tick, Skip)

machine words and code labels.

Encode program as
Goncrete machine code

64-bit 32-bit
words words

Allanguages communicate with the external worid

Via a byle-array-based foreign-funcion Interface.

Heitang Make patterns exhaustive.
alanguage for
compiing away Global dead code elim

Tum tuples ino construtors

Mo nulary consirutor
paliorns Upw:

Compile pattern matches
1o nested lis and Lets

Implement bounds checks

ion calls/apps.
into mult-arg cals/apps

highlevel
lang. features.

o pat. match

ClosLang: Track where closure values
st language flow; annotate program
ith closures Iniroduce C-styl fast

Galls wherever possible
=T Remove deadcode

Prepare for closure conv.

abstract values incl. closures and ref pointers

> Simplify program
Inin smalluncions. WordLang: > Select target instructions

Fold constants and
Shink Lels

imperative " .
E?"‘,:?Ta;'?“f;‘w:gm language with > Perform SSA-like renaming
omplo gobalvrsno 3 :
it Raciudoad machine words, > Force two-reg code (if req.)
Opinis Lt expressions e e
a GC primitive | > Remove deadcode

Make some fucions i
> Allocate register names

\)\) \) RAVAVAVIVRVEVEVAVAVEVAVAVAVIRRVAVAV)

FecUrSive Lsing an acc.
Switeh to imperative style
Reduce callorsaved vars

Gombine adjacnt
memory allocaiions

abstract values incl.
ref and code pointers

‘Simpify program

WordLang:
imperaiive
language with
machine words,

Select target instructions
Perform SSAike renarming
Force two-req code (il req.)
Remove deadcode

>
>
-~
>
>
> Alocate ragternames
g
=
g
>
<

GG primitve

StackLang
imperaiive
fan memory acceses.
Rename registers to malch
arch registors/conventons.

Fiatten code

This inte rnship

optional GC

Delete no-ops (Tick, Skip)

machine words and code labels.

Encode program as
Goncrete machine code

64-bit 32-bit
words words

Allanguages communicate with the external worid
Via a byle-array-based foreign-funcion Interface.

What is register allocation

Model used for
optimisations:
infinite number of
registers

Reality:

small number of fast
registers

infinite number of
slow registers

What is register allocation

Model used for
optimisations:
infinite number of
registers

Register allocation

Reality:

small number of fast
registers

infinite number of
slow registers

Motivation for a new algorithm

CakeML currently uses the iterated register coalescing
algorithm [GA96]

Motivation for a new algorithm

CakeML currently uses the iterated register coalescing

algorithm [GA96]
It produces good code quality, but is slow: it is the slowest part of

the compiler

Motivation for a new algorithm

CakeML currently uses the iterated register coalescing

algorithm [GA96]

It produces good code quality, but is slow: it is the slowest part of
the compiler

Solution: the linear scan algorithm [PS99]
Orders of magnitude faster, only slightly worse code quality

Linear scan: liveness analysis

Q: When can we allocate two register to the same color?

Linear scan: liveness analysis

Q: When can we allocate two register to the same color?

A: When they never hold a useful value at the same time in the
program

Linear scan: liveness analysis

Q: When can we allocate two register to the same color?

A: When they never hold a useful value at the same time in the
program

Definition: a register lives at a point of the program iff its value is
useful

Linear scan: liveness analysis

Q: When can we allocate two register to the same color?

Al: When they never hold a useful value at the same time in the
program

Definition: a register lives at a point of the program iff its value is
useful

A2: When they never live at the same time

Linear scan: liveness analysis

0 /* Live = {} */
a< ...
1 /* Live = {a} */
b+ ...
2 /* Live = {a,b} */
if ...
3 /* Live = {b} */
c+b
4 /* Live = {c} */
else:
5 /* Live = {a} */
c<a
6 /* Live = {c} */
7 /* Live = {c} */
print(c)

8 /* Live = {} */

Linear scan: liveness analysis

0

-

N

~

/* Live = {}
a< ...
/* Live = {a}

b+ ...

/* Live = {a,b}
if ...

/* Live = {b}
c+b

/* Live = {c}
else:

/* Live = {a}
c<«a

/* Live = {c}
/* Live = {c}
print(c)

/* Live = {}

*/

*/

*/

*/
*/

*/

Live(a) = {1,2,5} C [1,5]
Live(b) = {2,3} C [2,3]
Live(c) = {4,6,7} C [4,7]

Linear scan: register allocation

Color pool
Active list |:|

Linear scan: register allocation

Color pool @
Active list @

Linear scan: register allocation

Color pool @
Active list @

Linear scan: register allocation

Color pool |j|
Active list

Linear scan: register allocation

Color pool |j|
Active list

Linear scan: register allocation

Color pool |:|
Active list @

Linear scan: register allocation

Color pool E
Active list @

Linear scan: register allocation

Color pool D
Active list m

Linear scan: register allocation

Color pool E
Active list B

Linear scan: register allocation

Color pool D
Active list m

Linear scan: register allocation

Color pool D
Active list m

Linear scan: register allocation

Color pool E
Active list @

Linear scan: register allocation

Color pool D
Active list m

Linear scan: register allocation

Color pool E
Active list @

Linear scan: register allocation

Color pool D
Active list m

Setup of the current register allocator

clash _tree =
Delta (num list) (num list)
| Set num _set
| Branch (num _set option) clash _tree clash _tree
| Seq clash _tree clash tree

Setup of the current register allocator

clash _tree =
Delta (num list) (num list)
| Set num _set
| Branch (num _set option) clash _tree clash _tree
| Seq clash _tree clash tree

get live backward ct (Delta writes reads) live =

(live \ writes) U reads
get live backward ct (Set cutset) live = cutset
get live backward ct (Branch (Some cutset) ct; cts) live = cutset
get live backward ct (Branch None ct) cty) live =

(get_live backward ct cty live) U (get live backward ct cty live)
get live backward ct (Seq ct) ctp) live =

get live backward ct ct; (get live backward ct cty live)

Setup of the current register allocator

clash _tree =
Delta (num list) (num list)
| Set num _set
| Branch (num _set option) clash _tree clash _tree
| Seq clash _tree clash tree

get live backward ct (Delta writes reads) live =
(live \ writes) U reads
get live backward ct (Set cutset) live = cutset

get live backward ct (Branch (Some cutset) ct; cts) live = cutset

get live backward ct (Branch None ct) cty) live =

(get_live backward ct cty live) U (get live backward ct cty live)

get live backward ct (Seq ct) ctp) live =
get live backward ct ct; (get live backward ct cty live)

check clash tree col clashtree

Meet the live tree datatype

live tree =
Writes (num list) Transformation done
| Reads (num list) get live tree

| Branch live _tree live tree
| Seq live tree live tree

Meet the live tree datatype

live tree =
Writes (num list) Transformation done by
| Reads (num list) get live tree

| Branch live _tree live tree
| Seq live tree live tree

get live backward (Writes wr) live =
live \ wr
get live backward (Reads rd) live =
live U rd
get live backward (Branch ct; cty) live =
(get_live backward ct; live) U (get live backward cty live)
get live backward (Seq ct; cto) live =
get live backward ct; (get live backward cty live)

Meet the live tree datatype

live tree =
Writes (num list) Transformation done by
| Reads (num list) get live tree

| Branch live _tree live tree
| Seq live tree live tree

get live backward (Writes wr) live =
live \ wr
get live backward (Reads rd) live =
live U rd
get live backward (Branch ct; cty) live =
(get_live backward ct; live) U (get live backward cty live)
get live backward (Seq ct; cto) live =
get live backward ct; (get live backward cty live)

check live tree col livetree

Correctness theorem of get live tree

Theorem
check live tree col (get live tree clashtree) =
check clash tree col clashtree

Correctness theorem of get live tree

Theorem
check live tree col (get live tree clashtree) =
check clash tree col clashtree

Proof.

By induction on clashtree, and using the lemmas:
get live backward ct clashtree live C

get live backward (get live tree clashtree) live
and

live; C liveg =
get live backward clashtree live; C get live backward clashtree live;

Liveness intervals: naive algorithm

Naive algorithm: compute living sets at each position of the
program, then compute the intervals.

Liveness intervals: naive algorithm

Naive algorithm: compute living sets at each position of the
program, then compute the intervals.

Problem: it might be Q(n?)

Liveness intervals: a faster algorithm

Insight: liveness interval start at a Writes and ends at a Reads

Liveness intervals: a faster algorithm

Insight: liveness interval start at a Writes and ends at a Reads

Fast algorithm:
» Beginning of interval of reg is the first line where reg is

written to

» End of interval of reg is the last line where reg is read

Liveness intervals: a problem?

1 read (a) Live(a) = [?,1]

Liveness intervals: a problem?

read (a
o Live(a) = [2,3]
3 read (a)

Liveness intervals: a problem?

if ...
1]
else: Live(a) = [2, 3]
2 ‘ write (a)
3 read (a)

Liveness intervals: a property on programs

Every read must be dominated by a write

Liveness intervals: a property on programs

Every read must be dominated by a write

Equivalentely,
get live backward livetree () = ()

Liveness intervals: a property on programs

Every read must be dominated by a write

Equivalentely,
get live backward livetree () = ()

Not easy to prove. A brutal solution is:

fix_domination /t =
let live = get live backward /t 0) in
if live = () then [t
else Seq (Writes (list_to numset live)) It

Liveness intervals: a property on programs

Every read must be dominated by a write

Equivalentely,
get live backward livetree () = ()

Not easy to prove. A brutal solution is:

fix_domination /t =
let live = get live backward /t 0) in
if live = () then [t
else Seq (Writes (list_to numset live)) It

(* TODO: might be Q(n?) *)

Liveness intervals: proof of correctness
A problem?

1 write(a)

-

© 0 N o o

10

write(c)
if ...
write(b)
write(c)
else:
write(a)
write(b)
read(a)
read(b)
read(c)
write(b)

Liveness intervals: proof of correctness
A problem?

1 write(a)
2 write(c)
if ...
3 write(b)
write(c) Live(a

-

)=1[77]
else: Live(b) = [10, 10]
write(a) Live(c) = [7,7]
write(b)

read(a)

read(b)

read(c)

10 write(b)

© 0 N o o

Liveness intervals: proof of correctness
A problem?

1 write(a)

-

© 0 N o o

10

write(c)
if ...
write(b)
write(c)
else:
write(a)
write(b)
read(a)
read(b)
read(c)
write(b)

Live(a
Live(b
Live(c

)
)
)

[7,7]
[10, 10]
[7.9]

Liveness intervals: proof of correctness
A problem?

1 write(a)

-

© 0 N o o

10

write(c)
if ...
write(b)
write(c)
else:
write(a)
write(b)
read(a)
read(b)
read(c)
write(b)

Live(a
Live(b
Live(c

)
)
)

[7,7]
[10, 10]
[7.9]

Liveness intervals: proof of correctness
A problem?

1 write(a)

-

© 0 N o o

10

write(c)
if ...
write(b)
write(c)
else:
write(a)
write(b)
read(a)
read(b)
read(c)
write(b)

Live(a
Live(b
Live(c

)
)
)

[7,7]
[10, 10]
[?,9]

Liveness intervals: proof of correctness
A problem?

1 write(a)

-

© 0 N o o

10

write(c)
if ...
write(b)
write(c)
else:
write(a)
write(b)
read(a)
read(b)
read(c)
write(b)

Liveness intervals: proof of correctness
A problem?

1 write(a)

-

© 0 N o o

10

write(c)
if ...
write(b)
write(c)
else:
write(a)
write(b)
read(a)
read(b)
read(c)
write(b)

Liveness intervals: proof of correctness
A problem?

1 write(a)

-

© 0 N o o

10

write(c)
if ...
write(b)
write(c)
else:
write(a)
write(b)
read(a)
read(b)
read(c)
write(b)

Live(a) = [5,7]
Live(b) = [6, 10]
Live(c) = [4,9]

Liveness intervals: proof of correctness
A problem?

1 write(a)

-

© 0 N o o

10

write(c)
if ...
write(b)
write(c)
else:
write(a)
write(b)
read(a)
read(b)
read(c)
write(b)

Live(a) = [5,7]
Live(b) = [3, 10]
Live(c) = [4,9]

Liveness intervals: proof of correctness
A problem?

1 write(a)

-

© 0 N o o

10

write(c)
if ...
write(b)
write(c)
else:
write(a)
write(b)
read(a)
read(b)
read(c)
write(b)

Live(a) = [5,7]
Live(b) = [3, 10]
Live(c) = [2,9]

Liveness intervals: proof of correctness
A problem?

1 write(a)

-

© 0 N o o

10

write(c)
if ...
write(b)
write(c)
else:
write(a)
write(b)
read(a)
read(b)
read(c)
write(b)

Live(
Live(
Live(c

o o
— — —

[1,7]
= [3,10]
= [27 9]

Liveness intervals: proof of correctness
A problem?

Problem: what we want to prove is not true locally

Liveness intervals: proof of correctness
A problem?

Problem: what we want to prove is not true locally

Solution: Force the following property at every step:
If ais live, then beg[a] =7

Liveness intervals: proof of correctness
A modified algorithm

1 write(a)

-

© 0 N o o

10

write(c)
if ...
write(b)
write(c)
else:
write(a)
write(b)
read(a)
read(b)
read(c)
write(b)

Live(a) = [7,7]
Live(b) = [?,7]
Live(c) =[?7,7]
?=11

Liveness intervals: proof of correctness
A modified algorithm

1 write(a)

-

© 0 N o o

10

write(c)
if ...
write(b)
write(c)
else:
write(a)
write(b)
read(a)
read(b)
read(c)
write(b)

Live(
Live(
Lw (

a)
b) =
o

= [? ?]
[10, 10]
= [? ?]

Liveness intervals: proof of correctness
A modified algorithm

1 write(a)

-

© 0 N o o

10

write(c)
if ...
write(b)
write(c)
else:
write(a)
write(b)
read(a)
read(b)
read(c)
write(b)

Live(
Live(
Lwe(

a)
b) =
)

= [? ?]
[10, 10]
=[2,9]

Liveness intervals: proof of correctness

A modified algorithm

1 write(a)
2 write(c)

if ...
write(b)
write(c)

-

else:
write(a)

write(b)

read(a)

read(b)

read(c)

10 write(b)

© 0 N o o

Live(a) = [7,7]
Live(b) = [?, 10]
Live(c) = [?,9]
7—8

Liveness intervals: proof of correctness

A modified algorithm

1 write(a)

-

© 0 N o o

10

write(c)
if ...
write(b)
write(c)
else:
write(a)
write(b)
read(a)
read(b)
read(c)
write(b)

Live(a) = [7,7]

Live(b) = [?,10]

lee(c) =[7,9]
=7

Liveness intervals: proof of correctness
A modified algorithm

1 write(a)

-

© 0 N o o

10

write(c)
if ...
write(b)
write(c)
else:
write(a)
write(b)
read(a)
read(b)
read(c)
write(b)

Live(
Live(
Lwe(

a)
b) =
) =

= [? 7]
[6,10]
[?,9]

Liveness intervals: proof of correctness

A modified algorithm

1 write(a)

-

© 0 N o o

10

write(c)
if ...
write(b)
write(c)
else:
write(a)
write(b)
read(a)
read(b)
read(c)
write(b)

Live(a) = [5,7]
Live(b) = [6, 10]
Live(c) = [?,9]
7=5

Liveness intervals: proof of correctness

A modified algorithm

1 write(a)
2 write(c)

if ...
write(b)
write(c)

-

else:
write(a)

write(b)

read(a)

read(b)

read(c)

10 write(b)

© 0 N o o

Live(a) = [7,7]
Live(b) = [?, 10]
Live(c) = [?,9]
7=5

Liveness intervals: proof of correctness

A modified algorithm

1 write(a)

-

© 0 N o o

10

write(c)
if ...
write(b)
write(c)
else:
write(a)
write(b)
read(a)
read(b)
read(c)
write(b)

Live(a) = [7,7]

Live(b) = [?,10]

lee(c) = [4,9]
—4

Liveness intervals: proof of correctness

A modified algorithm

1 write(a)

-

© 0 N o o

10

write(c)
if ...
write(b)
write(c)
else:
write(a)
write(b)
read(a)
read(b)
read(c)
write(b)

Live(a) = [7,7]
Live(b) = [3, 10]
LJVG(C) [4,9]

Liveness intervals: proof of correctness
A modified algorithm

1 write(a)

-

© 0 N o o

10

write(c)
if ...
write(b)
write(c)
else:
write(a)
write(b)
read(a)
read(b)
read(c)
write(b)

Live(
Live(
Lwe(

a)
b) =
) =

= [? 7]
[3,10]
[?,9]

Liveness intervals: proof of correctness

A modified algorithm

1 write(a)

-

© 0 N o o

10

write(c)
if ...
write(b)
write(c)
else:
write(a)
write(b)
read(a)
read(b)
read(c)
write(b)

Live(a) = [7,7]
Live(b) = [3, 10]
LJVG(C) [2,9]

Liveness intervals: proof of correctness
A modified algorithm

1 write(a)
2 write(c)

if ...

write(b)
write(c) Live
else: Live
write(a) Live

-

= [1’ 7]
— [3.10]
- [27 9]

—_—
o W
— —

C

=

write(b) 7=
read(a)
read(b)
read(c)
10 write(b)

© 0 N o o

Liveness intervals: proof of correctness

Prove that the two algorithm compute the same thing

Problem: The modified algorithm is easy to prove correct, but is
slow

Liveness intervals: proof of correctness

Prove that the two algorithm compute the same thing

Problem: The modified algorithm is easy to prove correct, but is

slow
Solution: Prove that the original and the modified algorithm

compute the same thing

Liveness intervals: proof of correctness

Prove that the two algorithm compute the same thing

Problem: The modified algorithm is easy to prove correct, but is
slow

Solution: Prove that the original and the modified algorithm
compute the same thing

Theorem
(begmod][r] # 7 and beg[r] # ?) = beg[r] = begmod]|r]

Liveness intervals: proof of correctness

Prove that the two algorithm compute the same thing

Problem: The modified algorithm is easy to prove correct, but is
slow

Solution: Prove that the original and the modified algorithm
compute the same thing

Theorem
(begmod][r] # 7 and beg[r] # ?) = beg[r] = begmod]|r]

Theorem
begmod[r] # 7 = beg]r] #?

Liveness intervals: proof of correctness

Prove that the two algorithm compute the same thing

Problem: The modified algorithm is easy to prove correct, but is
slow

Solution: Prove that the original and the modified algorithm
compute the same thing

Theorem
(begmod][r] # 7 and beg[r] # ?) = beg[r] = begmod]|r]

Theorem
begmod[r] # 7 = beg]r] #?

Theorem
beg[r] # ? = end[r] #?

Liveness intervals: proof of correctness

Prove that the two algorithm compute the same thing

Problem: The modified algorithm is easy to prove correct, but is
slow

Solution: Prove that the original and the modified algorithm
compute the same thing

Theorem

(begmod][r] # 7 and beg[r] # ?) = beg[r] = begmod]|r]
Theorem

begmod[r] # 7 = beg]r] #?

Theorem

beg[r] # ? = end[r] #?

Theorem
end[r] # 7 = (begmod|r] # ?orr is live)

Additional requirements for CakeML's register allocator

» Some type of register must be allocated on the stack

Additional requirements for CakeML's register allocator

» Some type of register must be allocated on the stack

Simply spill them automatically

Additional requirements for CakeML's register allocator

» Some type of register must be allocated on the stack

Simply spill them automatically

» Stack frame size should be minimized

Additional requirements for CakeML's register allocator

» Some type of register must be allocated on the stack

Simply spill them automatically
» Stack frame size should be minimized

Do a second pass to reallocate registers on the stack

Additional requirements for CakeML's register allocator

» Some type of register must be allocated on the stack

Simply spill them automatically
» Stack frame size should be minimized
Do a second pass to reallocate registers on the stack

» Some pair of registers should have the same color (if possible)

Additional requirements for CakeML's register allocator

» Some type of register must be allocated on the stack

Simply spill them automatically
» Stack frame size should be minimized
Do a second pass to reallocate registers on the stack
» Some pair of registers should have the same color (if possible)

Check these colors first in the colorpool when allocating the second
register

Additional requirements for CakeML's register allocator

» Some type of register must be allocated on the stack

Simply spill them automatically
» Stack frame size should be minimized
Do a second pass to reallocate registers on the stack
» Some pair of registers should have the same color (if possible)

Check these colors first in the colorpool when allocating the second
register

» Some pair of registers must not have the same color

Additional requirements for CakeML's register allocator

» Some type of register must be allocated on the stack

Simply spill them automatically
» Stack frame size should be minimized
Do a second pass to reallocate registers on the stack
» Some pair of registers should have the same color (if possible)

Check these colors first in the colorpool when allocating the second
register

» Some pair of registers must not have the same color

Remove these colors from the colorpool when allocating the second
register

Additional requirements for CakeML's register allocator

» Some register must be allocated to a specific color

Additional requirements for CakeML's register allocator

» Some register must be allocated to a specific color

The obvious solution produces bad allocation

Additional requirements for CakeML's register allocator

» Some register must be allocated to a specific color

The obvious solution produces bad allocation

Additional requirements for CakeML's register allocator

» Some register must be allocated to a specific color

The obvious solution produces bad allocation

Additional requirements for CakeML's register allocator

» Some register must be allocated to a specific color

The obvious solution produces bad allocation

Good solution: only ensure they have different colors, find an
exchange afterwards

Additional requirements for CakeML's register allocator

» Some register must be allocated to a specific color

The obvious solution produces bad allocation

Good solution: only ensure they have different colors, find an
exchange afterwards

Additional requirements for CakeML's register allocator

» Some register must be allocated to a specific color

The obvious solution produces bad allocation

Good solution: only ensure they have different colors, find an
exchange afterwards

Correctness proof for the linear scan algorithm

» Algorithm split in 16 elementary function

» 20 invariants preserved during the execution

Correctness proof for the linear scan algorithm

» Algorithm split in 16 elementary function

» 20 invariants preserved during the execution

Each correctness theorem is of the form:

if
» [some condition on the input]

» invariants are verified before calling the function

then
» the functions succeeds (i.e. no array out-of-bounds)
> [some property on the output]
» invariants are verified after calling the function

» [specify which colors might have changed]

o e
ion ti
formance: compilat
Perform

T
B
‘ an
inear sc:
. simple E5553 |
IRC
5
4+
3k
2
1k
[

ur. sptree ‘:Ont’ai,
mm rti rt reverse X
Queye
i 9soy
gso imp
i anSEns
folgy
fib
du yc"ntain
. btree ,
bstCOnta,,,
a Y_contajn

Performance: compilation time

5 T T
linear scan EXXX3
simple £S5
ar IRC b
3 i
2 i
1 i
° 2
i T -
arTay_Contabf,s,Lchtainbtree dummy, ¢, n’é N old) Nqueens 9SOrtim,, 9sort ueue everse SPlree congy

Not that bad, but we would hope better.

Performance: generated code speed

T
linear scan XXX

IRC

simple EE55)

PRI
%Y STatarTeera%%

£
3
Q4w
=&
............. S
N
£
£
S
3
........................
&
£
Qc
RREIIIK, &
g
5
S
S
B
<5
ERRIXIXIXIIIIRSA &
BRI £
C~
2
£
........... i i ©
~ ~ o ©°

n
- 5

linear scan XXX

Performance: generated code speed

IRC

simple EE55)

PRI
%Y STatarTeera%%

£
5
&

............. S

N

£

£

S

3

@

L
L V22227727208
............. &

g

S

8

o
gs
L bbb B
BRI &

8

N

£

s

~ - n °

n
- 5

This is really bad.

Performance: generated code speed

IRC

simple EE55)

T
linear scan XXX

array copy. ab’%t‘contai# tree

This is really bad.

I RS GA A
L0 tat et tatate e tetatetetetatatatetetatet

The culprit: physical registers have absurdly long liveness intervals

Performance: generated code speed

linear scan XXX

IRC

simple EE55)
zzz2

RIS A A
L0 tat et tatate e tetatetetetatatatetetatet

qsort Queye Teverse SPtree contaj
~ i

Nqueens 9SOrtimy,

foldy

fib
_Contajp

dummy

an "ay‘conzab,f,{‘-'ontainb tree

This is really bad.

The culprit: physical registers have absurdly long liveness intervals

Solution: place the allocator before calling conventions are enforced

Conclusion

| implemented and verified end-to-end a new register allocator,
which might become the default allocator in CakeML.

There is still some work to do to make it useful.

References

[@ Lal George and Andrew W. Appel.
Iterated register coalescing.
In POPL, pages 208-218. ACM Press, 1996.

[Massimiliano Poletto and Vivek Sarkar.
Linear scan register allocation.
ACM Trans. Program. Lang. Syst., 21(5):895-913, 1999.

