
Faster CakeML compilation with a
verified linear scan register allocator

Théophile Wallez

04/09/2018

Compiler transformations

source syntax

source AST

LanguagesValues

Parse concrete syntax

a
b
st

ra
ct

 v
a
lu

e
s

in
cl

.
cl

o
su

re
s

a
n

d
 r

e
f

p
o
in

te
rs

a
b
st

ra
ct

 v
a
lu

e
s

in
cl

.
re

f
a
n

d
 c

o
d
e
 p

o
in

te
rs

m

a
ch

in
e
 w

o
rd

s
a
n
d
 c

o
d
e
 l
a
b
e
ls

6
4

-b
it

 w

o
rd

s

no pat. match

3
2

-b
it

 w
o
rd

s

ClosLang:
last language
with closures
(has multi-arg

closures)

Infer types, exit if fail

Introduce globals vars,
eliminate modules &
replace constructor
names with numbers

Make patterns exhaustive

Compile pattern matches
to nested Ifs and Lets

 Implement bounds checks

Track where closure values
flow; annotate program

Fuse function calls/apps
into multi-arg calls/apps

Introduce C-style fast
calls wherever possible

Remove deadcode

Prepare for closure conv.

Perform closure conv.

Inline small functions

Fold constants and
shrink Lets

Split over-sized functions
into many small functions

Compile global vars into a
dynamically resized array

Optimise Let-expressions

Switch to imperative style

Remove deadcode

Combine adjacent
memory allocations

Remove data abstraction

Simplify program

Select target instructions

Perform SSA-like renaming

Force two-reg code (if req.)

Reduce caller-saved vars

Allocate register names

Concretise stack

Implement GC primitive

Turn stack access into
memory acceses

Rename registers to match
arch registers/conventions

Flatten code

Delete no-ops (Tick, Skip)

Encode program as
concrete machine code

BVL:
functional
language
without
closures

DataLang:
imperative
language

WordLang:
imperative

language with
machine words,

memory and
a GC primitive

StackLang:
imperative
language

with array-like
stack and

optional GC

LabLang:
assembly lang.

ARMv6

ARMv8 x86-64 MIPS-64 RISC-V

All languages communicate with the external world
via a byte-array-based foreign-function interface.

Move nullary constructor
patterns upwards

Make some functions tail-
recursive using an acc.

BVI:
one global

variable

FlatLang:
a language for
compiling away

high-level
lang. features

Global dead code elim.

Turn tuples into construtors

This internship

Compiler transformations

source syntax

source AST

LanguagesValues

Parse concrete syntax

a
b
st

ra
ct

 v
a
lu

e
s

in
cl

.
cl

o
su

re
s

a
n

d
 r

e
f

p
o
in

te
rs

a
b
st

ra
ct

 v
a
lu

e
s

in
cl

.
re

f
a
n

d
 c

o
d
e
 p

o
in

te
rs

m

a
ch

in
e
 w

o
rd

s
a
n
d
 c

o
d
e
 l
a
b
e
ls

6
4

-b
it

 w

o
rd

s

no pat. match

3
2

-b
it

 w
o
rd

s

ClosLang:
last language
with closures
(has multi-arg

closures)

Infer types, exit if fail

Introduce globals vars,
eliminate modules &
replace constructor
names with numbers

Make patterns exhaustive

Compile pattern matches
to nested Ifs and Lets

 Implement bounds checks

Track where closure values
flow; annotate program

Fuse function calls/apps
into multi-arg calls/apps

Introduce C-style fast
calls wherever possible

Remove deadcode

Prepare for closure conv.

Perform closure conv.

Inline small functions

Fold constants and
shrink Lets

Split over-sized functions
into many small functions

Compile global vars into a
dynamically resized array

Optimise Let-expressions

Switch to imperative style

Remove deadcode

Combine adjacent
memory allocations

Remove data abstraction

Simplify program

Select target instructions

Perform SSA-like renaming

Force two-reg code (if req.)

Reduce caller-saved vars

Allocate register names

Concretise stack

Implement GC primitive

Turn stack access into
memory acceses

Rename registers to match
arch registers/conventions

Flatten code

Delete no-ops (Tick, Skip)

Encode program as
concrete machine code

BVL:
functional
language
without
closures

DataLang:
imperative
language

WordLang:
imperative

language with
machine words,

memory and
a GC primitive

StackLang:
imperative
language

with array-like
stack and

optional GC

LabLang:
assembly lang.

ARMv6

ARMv8 x86-64 MIPS-64 RISC-V

All languages communicate with the external world
via a byte-array-based foreign-function interface.

Move nullary constructor
patterns upwards

Make some functions tail-
recursive using an acc.

BVI:
one global

variable

FlatLang:
a language for
compiling away

high-level
lang. features

Global dead code elim.

Turn tuples into construtors

Remove deadcode

Simplify program

Select target instructions

Perform SSA-like renaming

Force two-reg code (if req.)

Allocate register names

WordLang:
imperative

language with
machine words,

memory and
a GC primitive

This internship

Compiler transformations

source syntax

source AST

LanguagesValues

Parse concrete syntax

a
b
st

ra
ct

 v
a
lu

e
s

in
cl

.
cl

o
su

re
s

a
n

d
 r

e
f

p
o
in

te
rs

a
b
st

ra
ct

 v
a
lu

e
s

in
cl

.
re

f
a
n

d
 c

o
d
e
 p

o
in

te
rs

m

a
ch

in
e
 w

o
rd

s
a
n
d
 c

o
d
e
 l
a
b
e
ls

6
4

-b
it

 w

o
rd

s

no pat. match

3
2

-b
it

 w
o
rd

s

ClosLang:
last language
with closures
(has multi-arg

closures)

Infer types, exit if fail

Introduce globals vars,
eliminate modules &
replace constructor
names with numbers

Make patterns exhaustive

Compile pattern matches
to nested Ifs and Lets

 Implement bounds checks

Track where closure values
flow; annotate program

Fuse function calls/apps
into multi-arg calls/apps

Introduce C-style fast
calls wherever possible

Remove deadcode

Prepare for closure conv.

Perform closure conv.

Inline small functions

Fold constants and
shrink Lets

Split over-sized functions
into many small functions

Compile global vars into a
dynamically resized array

Optimise Let-expressions

Switch to imperative style

Remove deadcode

Combine adjacent
memory allocations

Remove data abstraction

Simplify program

Select target instructions

Perform SSA-like renaming

Force two-reg code (if req.)

Reduce caller-saved vars

Allocate register names

Concretise stack

Implement GC primitive

Turn stack access into
memory acceses

Rename registers to match
arch registers/conventions

Flatten code

Delete no-ops (Tick, Skip)

Encode program as
concrete machine code

BVL:
functional
language
without
closures

DataLang:
imperative
language

WordLang:
imperative

language with
machine words,

memory and
a GC primitive

StackLang:
imperative
language

with array-like
stack and

optional GC

LabLang:
assembly lang.

ARMv6

ARMv8 x86-64 MIPS-64 RISC-V

All languages communicate with the external world
via a byte-array-based foreign-function interface.

Move nullary constructor
patterns upwards

Make some functions tail-
recursive using an acc.

BVI:
one global

variable

FlatLang:
a language for
compiling away

high-level
lang. features

Global dead code elim.

Turn tuples into construtors

Remove deadcode

Simplify program

Select target instructions

Perform SSA-like renaming

Force two-reg code (if req.)

Allocate register names

WordLang:
imperative

language with
machine words,

memory and
a GC primitive

This internship

What is register allocation

Model used for
optimisations:
infinite number of
registers

Register allocation−−−−−−−−−−−→

Reality:
small number of fast
registers
infinite number of
slow registers

What is register allocation

Model used for
optimisations:
infinite number of
registers

Register allocation−−−−−−−−−−−→

Reality:
small number of fast
registers
infinite number of
slow registers

Motivation for a new algorithm

CakeML currently uses the iterated register coalescing
algorithm [GA96]

It produces good code quality, but is slow: it is the slowest part of
the compiler

Solution: the linear scan algorithm [PS99]
Orders of magnitude faster, only slightly worse code quality

Motivation for a new algorithm

CakeML currently uses the iterated register coalescing
algorithm [GA96]
It produces good code quality, but is slow: it is the slowest part of
the compiler

Solution: the linear scan algorithm [PS99]
Orders of magnitude faster, only slightly worse code quality

Motivation for a new algorithm

CakeML currently uses the iterated register coalescing
algorithm [GA96]
It produces good code quality, but is slow: it is the slowest part of
the compiler

Solution: the linear scan algorithm [PS99]
Orders of magnitude faster, only slightly worse code quality

Linear scan: liveness analysis

Q: When can we allocate two register to the same color?

A When they never hold a useful value at the same time in the
program

Definition: a register lives at a point of the program iff its value is
useful
A2: When they never live at the same time

Linear scan: liveness analysis

Q: When can we allocate two register to the same color?

A: When they never hold a useful value at the same time in the
program

Definition: a register lives at a point of the program iff its value is
useful
A2: When they never live at the same time

Linear scan: liveness analysis

Q: When can we allocate two register to the same color?

A: When they never hold a useful value at the same time in the
program

Definition: a register lives at a point of the program iff its value is
useful

A2: When they never live at the same time

Linear scan: liveness analysis

Q: When can we allocate two register to the same color?

A1: When they never hold a useful value at the same time in the
program

Definition: a register lives at a point of the program iff its value is
useful
A2: When they never live at the same time

Linear scan: liveness analysis

0 /* Live = {} */
a← . . .

1 /* Live = {a} */
b← . . .

2 /* Live = {a, b} */
if . . . :

3 /* Live = {b} */
c← b

4 /* Live = {c} */
else:

5 /* Live = {a} */
c← a

6 /* Live = {c} */
7 /* Live = {c} */
print(c)

8 /* Live = {} */

Live(a) = {1, 2, 5} ⊂ [1, 5]
Live(b) = {2, 3} ⊂ [2, 3]
Live(c) = {4, 6, 7} ⊂ [4, 7]

Linear scan: liveness analysis

0 /* Live = {} */
a← . . .

1 /* Live = {a} */
b← . . .

2 /* Live = {a, b} */
if . . . :

3 /* Live = {b} */
c← b

4 /* Live = {c} */
else:

5 /* Live = {a} */
c← a

6 /* Live = {c} */
7 /* Live = {c} */
print(c)

8 /* Live = {} */

Live(a) = {1, 2, 5} ⊂ [1, 5]
Live(b) = {2, 3} ⊂ [2, 3]
Live(c) = {4, 6, 7} ⊂ [4, 7]

Linear scan: register allocation

Color pool

Active list

Linear scan: register allocation

Color pool

Active list

Linear scan: register allocation

Color pool

Active list

Linear scan: register allocation

Color pool

Active list

Linear scan: register allocation

Color pool

Active list

Linear scan: register allocation

Color pool

Active list

Linear scan: register allocation

Color pool

Active list

Linear scan: register allocation

Color pool

Active list

Linear scan: register allocation

Color pool

Active list

Linear scan: register allocation

Color pool

Active list

Linear scan: register allocation

Color pool

Active list

Linear scan: register allocation

Color pool

Active list

Linear scan: register allocation

Color pool

Active list

Linear scan: register allocation

Color pool

Active list

Linear scan: register allocation

Color pool

Active list

Setup of the current register allocator

clash_tree =
Delta (num list) (num list)
| Set num_set
| Branch (num_set option) clash_tree clash_tree
| Seq clash_tree clash_tree

get_live_backward_ct (Delta writes reads) live =
(live \ writes) ∪ reads

get_live_backward_ct (Set cutset) live = cutset
get_live_backward_ct (Branch (Some cutset) ct1 ct2) live = cutset
get_live_backward_ct (Branch None ct1 ct2) live =

(get_live_backward_ct ct1 live) ∪ (get_live_backward_ct ct2 live)
get_live_backward_ct (Seq ct1 ct2) live =
get_live_backward_ct ct1 (get_live_backward_ct ct2 live)

check_clash_tree col clashtree

Setup of the current register allocator

clash_tree =
Delta (num list) (num list)
| Set num_set
| Branch (num_set option) clash_tree clash_tree
| Seq clash_tree clash_tree

get_live_backward_ct (Delta writes reads) live =
(live \ writes) ∪ reads

get_live_backward_ct (Set cutset) live = cutset
get_live_backward_ct (Branch (Some cutset) ct1 ct2) live = cutset
get_live_backward_ct (Branch None ct1 ct2) live =

(get_live_backward_ct ct1 live) ∪ (get_live_backward_ct ct2 live)
get_live_backward_ct (Seq ct1 ct2) live =
get_live_backward_ct ct1 (get_live_backward_ct ct2 live)

check_clash_tree col clashtree

Setup of the current register allocator

clash_tree =
Delta (num list) (num list)
| Set num_set
| Branch (num_set option) clash_tree clash_tree
| Seq clash_tree clash_tree

get_live_backward_ct (Delta writes reads) live =
(live \ writes) ∪ reads

get_live_backward_ct (Set cutset) live = cutset
get_live_backward_ct (Branch (Some cutset) ct1 ct2) live = cutset
get_live_backward_ct (Branch None ct1 ct2) live =

(get_live_backward_ct ct1 live) ∪ (get_live_backward_ct ct2 live)
get_live_backward_ct (Seq ct1 ct2) live =
get_live_backward_ct ct1 (get_live_backward_ct ct2 live)

check_clash_tree col clashtree

Meet the live_tree datatype

live_tree =
Writes (num list)
| Reads (num list)
| Branch live_tree live_tree
| Seq live_tree live_tree

Transformation done by
get_live_tree

get_live_backward (Writes wr) live =
live \ wr

get_live_backward (Reads rd) live =
live ∪ rd

get_live_backward (Branch ct1 ct2) live =
(get_live_backward ct1 live) ∪ (get_live_backward ct2 live)

get_live_backward (Seq ct1 ct2) live =
get_live_backward ct1 (get_live_backward ct2 live)

check_live_tree col livetree

Meet the live_tree datatype

live_tree =
Writes (num list)
| Reads (num list)
| Branch live_tree live_tree
| Seq live_tree live_tree

Transformation done by
get_live_tree

get_live_backward (Writes wr) live =
live \ wr

get_live_backward (Reads rd) live =
live ∪ rd

get_live_backward (Branch ct1 ct2) live =
(get_live_backward ct1 live) ∪ (get_live_backward ct2 live)

get_live_backward (Seq ct1 ct2) live =
get_live_backward ct1 (get_live_backward ct2 live)

check_live_tree col livetree

Meet the live_tree datatype

live_tree =
Writes (num list)
| Reads (num list)
| Branch live_tree live_tree
| Seq live_tree live_tree

Transformation done by
get_live_tree

get_live_backward (Writes wr) live =
live \ wr

get_live_backward (Reads rd) live =
live ∪ rd

get_live_backward (Branch ct1 ct2) live =
(get_live_backward ct1 live) ∪ (get_live_backward ct2 live)

get_live_backward (Seq ct1 ct2) live =
get_live_backward ct1 (get_live_backward ct2 live)

check_live_tree col livetree

Correctness theorem of get_live_tree

Theorem
check_live_tree col (get_live_tree clashtree) ⇒
check_clash_tree col clashtree

Proof.
By induction on clashtree, and using the lemmas:

get_live_backward_ct clashtree live ⊆
get_live_backward (get_live_tree clashtree) live

and

live1 ⊆ live2 ⇒
get_live_backward clashtree live1 ⊆ get_live_backward clashtree live2

Correctness theorem of get_live_tree

Theorem
check_live_tree col (get_live_tree clashtree) ⇒
check_clash_tree col clashtree

Proof.
By induction on clashtree, and using the lemmas:

get_live_backward_ct clashtree live ⊆
get_live_backward (get_live_tree clashtree) live

and

live1 ⊆ live2 ⇒
get_live_backward clashtree live1 ⊆ get_live_backward clashtree live2

Liveness intervals: naive algorithm

Naive algorithm: compute living sets at each position of the
program, then compute the intervals.

Problem: it might be Ω(n2)

Liveness intervals: naive algorithm

Naive algorithm: compute living sets at each position of the
program, then compute the intervals.

Problem: it might be Ω(n2)

Liveness intervals: a faster algorithm

Insight: liveness interval start at a Writes and ends at a Reads

Fast algorithm:
I Beginning of interval of reg is the first line where reg is

written to
I End of interval of reg is the last line where reg is read

Liveness intervals: a faster algorithm

Insight: liveness interval start at a Writes and ends at a Reads

Fast algorithm:
I Beginning of interval of reg is the first line where reg is

written to
I End of interval of reg is the last line where reg is read

Liveness intervals: a problem?

1 read (a) Live(a) = [?, 1]

Liveness intervals: a problem?

1 read (a)
2 write (a)
3 read (a)

Live(a) = [2, 3]

Liveness intervals: a problem?

if . . . :
1 . . .

else:
2 write (a)
3 read (a)

Live(a) = [2, 3]

Liveness intervals: a property on programs

Every read must be dominated by a write

Equivalentely,
get_live_backward livetree ∅ = ∅

Not easy to prove. A brutal solution is:

fix_domination lt =
let live = get_live_backward lt ∅ in
if live = ∅ then lt
else Seq (Writes (list_to_numset live)) lt

(* TODO: might be Ω(n2) *)

Liveness intervals: a property on programs

Every read must be dominated by a write

Equivalentely,
get_live_backward livetree ∅ = ∅

Not easy to prove. A brutal solution is:

fix_domination lt =
let live = get_live_backward lt ∅ in
if live = ∅ then lt
else Seq (Writes (list_to_numset live)) lt

(* TODO: might be Ω(n2) *)

Liveness intervals: a property on programs

Every read must be dominated by a write

Equivalentely,
get_live_backward livetree ∅ = ∅

Not easy to prove. A brutal solution is:

fix_domination lt =
let live = get_live_backward lt ∅ in
if live = ∅ then lt
else Seq (Writes (list_to_numset live)) lt

(* TODO: might be Ω(n2) *)

Liveness intervals: a property on programs

Every read must be dominated by a write

Equivalentely,
get_live_backward livetree ∅ = ∅

Not easy to prove. A brutal solution is:

fix_domination lt =
let live = get_live_backward lt ∅ in
if live = ∅ then lt
else Seq (Writes (list_to_numset live)) lt

(* TODO: might be Ω(n2) *)

Liveness intervals: proof of correctness
A problem?

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [?, ?]
Live(b) = [?, ?]
Live(c) = [?, ?]

Liveness intervals: proof of correctness
A problem?

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [?, ?]
Live(b) = [10, 10]
Live(c) = [?, ?]

Liveness intervals: proof of correctness
A problem?

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [?, ?]
Live(b) = [10, 10]
Live(c) = [?, 9]

Liveness intervals: proof of correctness
A problem?

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [?, ?]
Live(b) = [10, 10]
Live(c) = [?, 9]

Liveness intervals: proof of correctness
A problem?

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [?, 7]
Live(b) = [10, 10]
Live(c) = [?, 9]

Liveness intervals: proof of correctness
A problem?

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [?, 7]
Live(b) = [6, 10]
Live(c) = [?, 9]

Liveness intervals: proof of correctness
A problem?

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [5, 7]
Live(b) = [6, 10]
Live(c) = [?, 9]

Liveness intervals: proof of correctness
A problem?

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [5, 7]
Live(b) = [6, 10]
Live(c) = [4, 9]

Liveness intervals: proof of correctness
A problem?

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [5, 7]
Live(b) = [3, 10]
Live(c) = [4, 9]

Liveness intervals: proof of correctness
A problem?

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [5, 7]
Live(b) = [3, 10]
Live(c) = [2, 9]

Liveness intervals: proof of correctness
A problem?

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [1, 7]
Live(b) = [3, 10]
Live(c) = [2, 9]

Liveness intervals: proof of correctness
A problem?

Problem: what we want to prove is not true locally

Solution: Force the following property at every step:
If a is live, then beg[a] = ?

Liveness intervals: proof of correctness
A problem?

Problem: what we want to prove is not true locally

Solution: Force the following property at every step:
If a is live, then beg[a] = ?

Liveness intervals: proof of correctness
A modified algorithm

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [?, ?]
Live(b) = [?, ?]
Live(c) = [?, ?]
? = 11

Liveness intervals: proof of correctness
A modified algorithm

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [?, ?]
Live(b) = [10, 10]
Live(c) = [?, ?]
? = 10

Liveness intervals: proof of correctness
A modified algorithm

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [?, ?]
Live(b) = [10, 10]
Live(c) = [?, 9]
? = 9

Liveness intervals: proof of correctness
A modified algorithm

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [?, ?]
Live(b) = [?, 10]
Live(c) = [?, 9]
? = 8

Liveness intervals: proof of correctness
A modified algorithm

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [?, 7]
Live(b) = [?, 10]
Live(c) = [?, 9]
? = 7

Liveness intervals: proof of correctness
A modified algorithm

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [?, 7]
Live(b) = [6, 10]
Live(c) = [?, 9]
? = 6

Liveness intervals: proof of correctness
A modified algorithm

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [5, 7]
Live(b) = [6, 10]
Live(c) = [?, 9]
? = 5

Liveness intervals: proof of correctness
A modified algorithm

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [?, 7]
Live(b) = [?, 10]
Live(c) = [?, 9]
? = 5

Liveness intervals: proof of correctness
A modified algorithm

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [?, 7]
Live(b) = [?, 10]
Live(c) = [4, 9]
? = 4

Liveness intervals: proof of correctness
A modified algorithm

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [?, 7]
Live(b) = [3, 10]
Live(c) = [4, 9]
? = 3

Liveness intervals: proof of correctness
A modified algorithm

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [?, 7]
Live(b) = [3, 10]
Live(c) = [?, 9]
? = 3

Liveness intervals: proof of correctness
A modified algorithm

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [?, 7]
Live(b) = [3, 10]
Live(c) = [2, 9]
? = 2

Liveness intervals: proof of correctness
A modified algorithm

1 write(a)
2 write(c)

if . . . :
3 write(b)
4 write(c)

else:
5 write(a)
6 write(b)
7 read(a)
8 read(b)
9 read(c)

10 write(b)

Live(a) = [1, 7]
Live(b) = [3, 10]
Live(c) = [2, 9]
? = 1

Liveness intervals: proof of correctness
Prove that the two algorithm compute the same thing

Problem: The modified algorithm is easy to prove correct, but is
slow

Solution: Prove that the original and the modified algorithm
compute the same thing

Theorem
(begmod[r] 6= ? and beg[r] 6= ?)⇒ beg[r] = begmod[r]

Theorem
begmod[r] 6= ?⇒ beg[r] 6= ?

Theorem
beg[r] 6= ?⇒ end[r] 6= ?

Theorem
end[r] 6= ?⇒ (begmod[r] 6= ? or r is live)

Liveness intervals: proof of correctness
Prove that the two algorithm compute the same thing

Problem: The modified algorithm is easy to prove correct, but is
slow
Solution: Prove that the original and the modified algorithm
compute the same thing

Theorem
(begmod[r] 6= ? and beg[r] 6= ?)⇒ beg[r] = begmod[r]

Theorem
begmod[r] 6= ?⇒ beg[r] 6= ?

Theorem
beg[r] 6= ?⇒ end[r] 6= ?

Theorem
end[r] 6= ?⇒ (begmod[r] 6= ? or r is live)

Liveness intervals: proof of correctness
Prove that the two algorithm compute the same thing

Problem: The modified algorithm is easy to prove correct, but is
slow
Solution: Prove that the original and the modified algorithm
compute the same thing

Theorem
(begmod[r] 6= ? and beg[r] 6= ?)⇒ beg[r] = begmod[r]

Theorem
begmod[r] 6= ?⇒ beg[r] 6= ?

Theorem
beg[r] 6= ?⇒ end[r] 6= ?

Theorem
end[r] 6= ?⇒ (begmod[r] 6= ? or r is live)

Liveness intervals: proof of correctness
Prove that the two algorithm compute the same thing

Problem: The modified algorithm is easy to prove correct, but is
slow
Solution: Prove that the original and the modified algorithm
compute the same thing

Theorem
(begmod[r] 6= ? and beg[r] 6= ?)⇒ beg[r] = begmod[r]

Theorem
begmod[r] 6= ?⇒ beg[r] 6= ?

Theorem
beg[r] 6= ?⇒ end[r] 6= ?

Theorem
end[r] 6= ?⇒ (begmod[r] 6= ? or r is live)

Liveness intervals: proof of correctness
Prove that the two algorithm compute the same thing

Problem: The modified algorithm is easy to prove correct, but is
slow
Solution: Prove that the original and the modified algorithm
compute the same thing

Theorem
(begmod[r] 6= ? and beg[r] 6= ?)⇒ beg[r] = begmod[r]

Theorem
begmod[r] 6= ?⇒ beg[r] 6= ?

Theorem
beg[r] 6= ?⇒ end[r] 6= ?

Theorem
end[r] 6= ?⇒ (begmod[r] 6= ? or r is live)

Liveness intervals: proof of correctness
Prove that the two algorithm compute the same thing

Problem: The modified algorithm is easy to prove correct, but is
slow
Solution: Prove that the original and the modified algorithm
compute the same thing

Theorem
(begmod[r] 6= ? and beg[r] 6= ?)⇒ beg[r] = begmod[r]

Theorem
begmod[r] 6= ?⇒ beg[r] 6= ?

Theorem
beg[r] 6= ?⇒ end[r] 6= ?

Theorem
end[r] 6= ?⇒ (begmod[r] 6= ? or r is live)

Additional requirements for CakeML’s register allocator

I Some type of register must be allocated on the stack

Simply spill them automatically
I Stack frame size should be minimized

Do a second pass to reallocate registers on the stack
I Some pair of registers should have the same color (if possible)

Check these colors first in the colorpool when allocating the second
register
I Some pair of registers must not have the same color

Remove these colors from the colorpool when allocating the second
register

Additional requirements for CakeML’s register allocator

I Some type of register must be allocated on the stack

Simply spill them automatically

I Stack frame size should be minimized
Do a second pass to reallocate registers on the stack
I Some pair of registers should have the same color (if possible)

Check these colors first in the colorpool when allocating the second
register
I Some pair of registers must not have the same color

Remove these colors from the colorpool when allocating the second
register

Additional requirements for CakeML’s register allocator

I Some type of register must be allocated on the stack

Simply spill them automatically
I Stack frame size should be minimized

Do a second pass to reallocate registers on the stack
I Some pair of registers should have the same color (if possible)

Check these colors first in the colorpool when allocating the second
register
I Some pair of registers must not have the same color

Remove these colors from the colorpool when allocating the second
register

Additional requirements for CakeML’s register allocator

I Some type of register must be allocated on the stack

Simply spill them automatically
I Stack frame size should be minimized

Do a second pass to reallocate registers on the stack

I Some pair of registers should have the same color (if possible)
Check these colors first in the colorpool when allocating the second
register
I Some pair of registers must not have the same color

Remove these colors from the colorpool when allocating the second
register

Additional requirements for CakeML’s register allocator

I Some type of register must be allocated on the stack

Simply spill them automatically
I Stack frame size should be minimized

Do a second pass to reallocate registers on the stack
I Some pair of registers should have the same color (if possible)

Check these colors first in the colorpool when allocating the second
register
I Some pair of registers must not have the same color

Remove these colors from the colorpool when allocating the second
register

Additional requirements for CakeML’s register allocator

I Some type of register must be allocated on the stack

Simply spill them automatically
I Stack frame size should be minimized

Do a second pass to reallocate registers on the stack
I Some pair of registers should have the same color (if possible)

Check these colors first in the colorpool when allocating the second
register

I Some pair of registers must not have the same color
Remove these colors from the colorpool when allocating the second
register

Additional requirements for CakeML’s register allocator

I Some type of register must be allocated on the stack

Simply spill them automatically
I Stack frame size should be minimized

Do a second pass to reallocate registers on the stack
I Some pair of registers should have the same color (if possible)

Check these colors first in the colorpool when allocating the second
register
I Some pair of registers must not have the same color

Remove these colors from the colorpool when allocating the second
register

Additional requirements for CakeML’s register allocator

I Some type of register must be allocated on the stack

Simply spill them automatically
I Stack frame size should be minimized

Do a second pass to reallocate registers on the stack
I Some pair of registers should have the same color (if possible)

Check these colors first in the colorpool when allocating the second
register
I Some pair of registers must not have the same color

Remove these colors from the colorpool when allocating the second
register

Additional requirements for CakeML’s register allocator

I Some register must be allocated to a specific color

The obvious solution produces bad allocation

Good solution: only ensure they have different colors, find an
exchange afterwards

Additional requirements for CakeML’s register allocator

I Some register must be allocated to a specific color

The obvious solution produces bad allocation

Good solution: only ensure they have different colors, find an
exchange afterwards

Additional requirements for CakeML’s register allocator

I Some register must be allocated to a specific color

The obvious solution produces bad allocation

Good solution: only ensure they have different colors, find an
exchange afterwards

Additional requirements for CakeML’s register allocator

I Some register must be allocated to a specific color

The obvious solution produces bad allocation

Good solution: only ensure they have different colors, find an
exchange afterwards

Additional requirements for CakeML’s register allocator

I Some register must be allocated to a specific color

The obvious solution produces bad allocation

Good solution: only ensure they have different colors, find an
exchange afterwards

Additional requirements for CakeML’s register allocator

I Some register must be allocated to a specific color

The obvious solution produces bad allocation

Good solution: only ensure they have different colors, find an
exchange afterwards

Additional requirements for CakeML’s register allocator

I Some register must be allocated to a specific color

The obvious solution produces bad allocation

Good solution: only ensure they have different colors, find an
exchange afterwards

Correctness proof for the linear scan algorithm

I Algorithm split in 16 elementary function
I 20 invariants preserved during the execution

Each correctness theorem is of the form:

if

I [some condition on the input]
I invariants are verified before calling the function

then
I the functions succeeds (i.e. no array out-of-bounds)
I [some property on the output]
I invariants are verified after calling the function
I [specify which colors might have changed]

Correctness proof for the linear scan algorithm

I Algorithm split in 16 elementary function
I 20 invariants preserved during the execution

Each correctness theorem is of the form:

if

I [some condition on the input]
I invariants are verified before calling the function

then
I the functions succeeds (i.e. no array out-of-bounds)
I [some property on the output]
I invariants are verified after calling the function
I [specify which colors might have changed]

Performance: compilation time

	0

	1

	2

	3

	4

	5

array_contain
bst_contain

btree dummy_contain
fib foldl nqueens

qsortimp
qsort queue reverse sptree_contain

linear	scan
simple

IRC

Not that bad, but we would hope better.

Performance: compilation time

	0

	1

	2

	3

	4

	5

array_contain
bst_contain

btree dummy_contain
fib foldl nqueens

qsortimp
qsort queue reverse sptree_contain

linear	scan
simple

IRC

Not that bad, but we would hope better.

Performance: generated code speed

	0

	0.5

	1

	1.5

	2

array_contain
bst_contain

btree dummy_contain
fib foldl nqueens

qsortimp
qsort queue reverse sptree_contain

linear	scan
simple

IRC

This is really bad.
The culprit: physical registers have absurdly long liveness intervals
Solution: place the allocator before calling conventions are enforced

Performance: generated code speed

	0

	0.5

	1

	1.5

	2

array_contain
bst_contain

btree dummy_contain
fib foldl nqueens

qsortimp
qsort queue reverse sptree_contain

linear	scan
simple

IRC

This is really bad.

The culprit: physical registers have absurdly long liveness intervals
Solution: place the allocator before calling conventions are enforced

Performance: generated code speed

	0

	0.5

	1

	1.5

	2

array_contain
bst_contain

btree dummy_contain
fib foldl nqueens

qsortimp
qsort queue reverse sptree_contain

linear	scan
simple

IRC

This is really bad.
The culprit: physical registers have absurdly long liveness intervals

Solution: place the allocator before calling conventions are enforced

Performance: generated code speed

	0

	0.5

	1

	1.5

	2

array_contain
bst_contain

btree dummy_contain
fib foldl nqueens

qsortimp
qsort queue reverse sptree_contain

linear	scan
simple

IRC

This is really bad.
The culprit: physical registers have absurdly long liveness intervals
Solution: place the allocator before calling conventions are enforced

Conclusion

I implemented and verified end-to-end a new register allocator,
which might become the default allocator in CakeML.

There is still some work to do to make it useful.

References

Lal George and Andrew W. Appel.
Iterated register coalescing.
In POPL, pages 208–218. ACM Press, 1996.

Massimiliano Poletto and Vivek Sarkar.
Linear scan register allocation.
ACM Trans. Program. Lang. Syst., 21(5):895–913, 1999.

