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1 Introduction

1.1 The HOL4 theorem prover

HOL4 is an interactive theorem prover for Higher Order Logic (HOL). It is a descendant of LCF,
and is similar to Isabelle. Internally, all theorems in HOL4 are proved using basic inference rules [9] The
absence of dependent types in HOL4 make convenient proof automation available (such as rewriting and
first-order provers).

1.2 The CakeML verified compiler

CakeML is a language based on a subset of Standard ML, with a compiler is written in HOL4. The
formal semantics of CakeML is defined in a functional big-step style [7].

The CakeML compiler’s backend [10] transforms a source AST (which lacks type annotations) to
machine code for one of the five architectures: ARMv6, ARMv8, x86–64, MIPS–64 and RISC–V. The
backend has been proved to produce code that has the same behavior as the source program.

The compiler has two frontends: the first one is a traditional parser from CakeML source [5] with a
type inferencer [11], both of which have been proved to be sound and complete. The second frontend is a
translator from HOL functions to CakeML AST [6, 3], which produces a proof that the generated AST
has the same behavior as the HOL function. It can produce code that is stateful and performs I/O.

The compiler can bootstrap itself [5]: the first frontend combined with the backend is a HOL function
which transforms a CakeML source code to machine code. This function is given to the second frontend
combined with the backend to become machine code which transforms CakeML source code to machine
code. Every step in this process is verified end-to-end with HOL4, therefore making CakeML a fully
verified compiler.

1.3 The internship goal

The algorithm used in the register allocator of CakeML is the iterated register coalescing algorithm [1],
which can be slow: its complexity is at least Ω(n2) where n is the number of registers in the program. In
fact, most of the compilation time is spent in the register allocation: it is the slowest part of the compiler.

For several applications (JIT, REPL, running on a verified processor on a FPGA) it would be very
useful to have a short compilation time, and implementing the linear scan register allocator [8], would be
useful.

The goal of my internship was to implement and verify a linear scan register allocator, and integrate
it in the CakeML code base.

2 First work on CakeML: improving the constant folding

CakeML is a big and complex project, and starting by doing the linear scan register allocator first
seemed a bit too ambitious. Therefore, I started by improving the code for constant propagation. I
noticed that the algorithm was able to fold expressions like x + (1 + 2) to x + 3, but was failing to fold
expressions like 1 + (x+ 2) or even (x+ 1) + 2.

The constant folding is done by using smart constructors. A smart constructor SmartOp op exp1 exp2 is
in general equal to Op op exp1 exp2 but can be smarter in special cases: for example SmartOp Add exp1 (Number 0)
can be equal to exp1.

1



The smart constructor was previously implemented with code similar to the one below:

SmartOp op exp1 exp2 =
case (exp1,exp2) of
| (Number n1,Number n2) ⇒

if op = Add then Number (n1 + n2)
else if op = Sub then Number (n1 − n2)
else if op = Mul then Number (n1 × n2)
else Op op exp1 exp2

| _ ⇒ Op op exp1 exp2

We can see that this code can’t fold expressions like (x+ 1) + 2.
When implementing the smart constructor, we need to be careful not to change the order of evaluation,

since expressions can have side-effects executed. The smart constructor does not need to be careful of
overflows since CakeML supports big integers by default.

The algorithm applies this smart-constructor in a bottom-up way: the arguments of the smart-
constructor were also constructed using the smart-constructor hence the algorithm can fold expressions
like x+ (1 + (2 + (3 + 4))) into x+ 10.

Previously, SmartOp op exp1 exp2 only checked if both exp1 and exp2 were Numbers: I extended it to
check if exp1 and exp2 have the form Number n, Op op (Number n) exp or Op op exp (Number n).

It is possible to remove the case Op op exp (Number n) by noticing that exp + n = n + exp,
exp × n = n × exp and exp − n = -n + exp. After doing theses rewrites it is sufficient to check if exp1
or exp2 have the form Number n or Op op (Number n) exp.

Then, by enumerating all the cases it is possible to see that every combination of Add and Sub are
foldable without changing the order of evaluation (for example, (n1−x1)−(n2−x2) = (n1−n2)−(x1−x2))

I implemented this improvement in the intermediate language BVL, a functional language without
closures, and I updated the proofs.

The pull request is at the following url: https://github.com/CakeML/cakeml/pull/485

3 Preliminaries

3.1 What is register allocation

During optimisation passes, compilers generally use a model with an infinite number of virtual registers.
However, computers have a small fixed number of physical registers, hence we must map the virtual
registers to use this small number of physical registers.

Since it might not be possible to fit all virtual registers on a small number of physical registers, we
have a mechanism to "spill" some virtual registers to the stack. Therefore, we can still use an infinite
number of physical registers, but we should avoid spilling virtual registers as much as possible since it
degrades the performance of the code produced.

Two virtual registers must not be allocated to the same physical register when their value might be
useful at the same time in the program. To avoid overlap, we compute the positions in the program where
each virtual register might hold a useful value for the rest of the program execution.

At points the program where a virtual register might hold a useful value for the rest of the program,
we say that the virtual register is live. Notice the word "might": without this word, computing the set
of live registers at the position of a program is undecidable, so we compute a superset of the real live
registers.

To compute the set of live registers at each position of the program, we could use Kildall’s algorithm [4]
which is the classical algorithm used to perform liveness analysis. However, in CakeML, the control-flow
graphs have no cycles because loops are implemented as tail-recursive functions. In fact, we will see in
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Section 3.4 that control-flow graphs in CakeML have a very simple shape: we don’t need the complexity
of Kildall’s algorithm and the liveness analysis is more simple.

3.2 The linear scan register allocation algorithm

In this section, we present the linear scan register allocation algorithm [8], which is orders of magnitude
faster than the iterated register coalescing algorithm [1] and produces machine code of only slightly lower
quality.

First, the liveness analysis is performed, and the control-flow graph is flattened. After that, holes in
the liveness intervals are removed: this is the key approximation made by the algorithm to achieve its
speed.

For example, in the following example code:

0 /* Live = {} */
a← . . .

1 /* Live = {a} */
b← . . .

2 /* Live = {a, b} */
if . . . :

3 /* Live = {b} */
c← b

4 /* Live = {c} */
else:

5 /* Live = {a} */
c← a

6 /* Live = {c} */
7 /* Live = {c} */
print(c)

8 /* Live = {} */

The liveness intervals are:
Live(a) = {1, 2, 5} ⊂ [1, 5]
Live(b) = {2, 3} ⊂ [2, 3]
Live(c) = {4, 6, 7} ⊂ [4, 7]

Each register has a liveness interval, and two register interfere when their liveness intervals intersect.
The algorithm iterates over all registers, sorted by increasing beginning of liveness intervals. During

the algorithm, two pieces of information are kept track of:

• the list of active intervals at the current point of the program: intervals that contain the start point
of the interval we are currently processing

• a color pool, which contains the physical registers that are not used by registers in the active list

The colors are assigned greedily. When there are no colors available, the algorithm spills to the stack
the register with the maximum end of liveness interval.

The algorithm produces a correct coloration, because if two intervals intersect, then one contains the
beginning of the other, and they cannot get assigned the same color because when processing the second
interval, the first one will be in the active list hence its color won’t be in the colorpool.
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More precisely, the algorithm works as follow:

Function LinearScanRegisterAllocation()
active = {}
foreach live interval i, in order of increasing startpoint[i] :

ExpireOldIntervals(i)
if colorpool is not empty :

col← color removed from colorpool
color[i]← col
add i to active

else:
SpillInterval(i)

end
Function ExpireOldIntervals(i)

foreach live interval j in active such that endpoint[j] < startpoint[i] :
remove j from active
add color[j] to the colorpool

end
Function SpillInterval(i)

tospill← argmax(endpoint[j] for j ∈ active)
if endpoint[tospill] > endpoint[i] :

color[i]← color[tospill]
color[tospill]← new stack location
remove tospill from active
add i to active

else:
color[i]← new stack location

end

3.3 HOL4’s standard library

In this report, we will use several functions and datatypes defined in HOL4’s standard library.
unit is the type with one element named (), num represents a natural number (including zero), int is

an integer. They both are infinite, there is no maximal value.
α list is a list of objects with type α. mem x l is true iff x is in the list l . every P l is true iff the

predicate P is true on every element of l . el n l is the nth element of the list l . map and filter behave
like the usual map and filter functions in other functional languages. x ::xs is the list xs prepended with
x . l1 ++ l2 is the concatenation of l1 and l2. all_distinct l is true iff l every element of l is unique. length l
is the length of l .

α × β represents a pair. The first and second element can be accessed with the fst and snd functions.
α option is either None or Some v . The value can be extracted by the partial function THE or the total

function the: THE (Some v) = v , the d (Some v) = v and the d None = d .
α num_map represents a function from a subset of num to α, or equivalently a total function from num

to α option. lookup k s returns the value associated with k in the α num_map s. The type of lookup k s
is α option, and lookup k s = None means that there is no element associated with k in s. insert k v s add
the new mapping k 7→ v in s. α num_map is implemented using a trie on the binary form of numbers,
therefore the complexity of lookup k s or insert k v s is O(log2(k)). domain s is the domain of definition
of s: domain s = { k | lookup k s 6= None } .

num_set represents a subset of num. It is actually a type alias for unit num_map: x is in the subset
iff lookup x s = Some (). The empty set is represented by LN. union s1 s2 computes the union of s1 and
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s2, difference s1 s2 is the set of elements in s1 but not in s2. domain s is the set represented by s.
There is some formalisation of sets, they are purely proofs objects and don’t result in any computation.

image f set is the image of set by the function f . injective f set checks if the function f is injective on set.

3.4 CakeML’s current register allocator

The CakeML compiler has a lot of intermediate languages, and the register allocation happens close
to the end of the compilation, in an intermediate language called WordLang.

A register allocation algorithm produces a coloration such that two interfering registers don’t have the
same color. This is checked by the predicate colouring_ok.

There is a pre-existing theorem stating that if colouring_ok says that a coloration is good, then applying
the coloration doesn’t change the semantics of the program.

Only the reads and writes of the WordLang AST are relevant to the register allocation. This infor-
mation is summarized in the clash_tree datatype retrieved with the get_clash_tree function.

The function check_clash_tree checks if a coloration is compatible with the clash tree. Its prototype
is: check_clash_tree f clashtree live flive where f is the coloration function, live is the set of live variables
after clashtree. Two invariants are maintained: flive is f applied to the set live, and f is injective on live.
When the coloration is correct, the function returns Some (livein,flivein) where livein is the set of live
variables before clashtree. When the coloration is not correct, the function returns None.

The following theorem says that if check_clash_tree says that a coloration is good then colouring_ok is
always true. wf_cutsets prog is a technical hypothesis without any deep meaning (it says that the cutsets
of prog are well-formed). LN represents the empty set of the num_set datastructure.

` wf_cutsets prog ∧
check_clash_tree f (get_clash_tree prog) LN LN = Some (livein,flivein)⇒
colouring_ok f prog LN

The clash_tree datatype is defined like this:

clash_tree =
Delta (num list) (num list)
| Set num_set
| Branch (num_set option) clash_tree clash_tree
| Seq clash_tree clash_tree

Delta writes reads represents an instruction that writes to a list of registers and reads from a list of
registers.

Set cutset represents a cutset, the set of local variables which must be preserved past subroutine calls.
It is useful for the garbage collector.

Branch optcutset ct1 ct2 represents an if condition: the two programs are the if program and the else
program. optcutset is an optional cutset.

Seq ct1 ct2 represent the concatenation of two programs
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The correctness theorem of the current register allocator looks like this:

` every (λ (x ,y). in_clash_tree ct x ∧ in_clash_tree ct y) forced ⇒
∃ spcol livein flivein.

reg_alloc alg sc k moves ct forced = Success spcol ∧
check_clash_tree (sp_default spcol) ct LN LN = Some (livein,flivein) ∧
(∀ x .

in_clash_tree ct x ⇒
x ∈ domain spcol ∧ if is_phy_var x then sp_default spcol x = x div 2
else if is_stack_var x then k ≤ sp_default spcol x else T) ∧

(∀ x . x ∈ domain spcol ⇒ in_clash_tree ct x ) ∧
every (λ (x ,y). sp_default spcol x = sp_default spcol y ⇒ x = y) forced

Some registers represent physical registers, and shouldn’t be allocated to any other register. They
are recognised using the predicate is_phy_var. It is useful for two things: calling conventions, and some
machine instructions which requires specific registers as input (e.g. x86_64’s idivq uses only %rax and
%rdx).

Some registers should be allocated on the stack: they are recognised using the predicate is_stack_var
The list forced is a list of pair of registers that should not be allocated to the same physical register.

It is a constraint coming from some machine instructions in MIPS, RISC-V and ARMv8, where the input
should not be equal to the output.

The first part of the correctness theorem is a function call to check_clash_tree which says that the
coloration produced is a correct coloration. The second part says that registers that should be allocated
on the stack are on the stack, and that physical registers are allocated to themselves. The last part says
that the forced requirements are satisfied.

To ensure that the new allocator fits nicely in the CakeML codebase, it should try to have a correctness
theorem as similar as the above pre-existing one.

4 Implementation and correctness of the algorithm in HOL4

Everything presented in this section is my own work.
The code is available here: https://github.com/CakeML/cakeml/blob/master/compiler/backend/

reg_alloc/linear_scanScript.sml
The proofs are available here: https://github.com/CakeML/cakeml/blob/master/compiler/backend/

reg_alloc/proofs/linear_scanProofScript.sml
The first step of the algorithm is to remove cutsets, because the linear scan algorithm can’t do anything

smart with cutsets. Doing this also allows to have a simpler color-checking function, hence simplify the
proofs. The second step is to compute the liveness intervals. The third and last step is the actual linear
scan algorithm.

4.1 Step 1: remove cutsets

The set of live registers is computed backwards. The reason for this is that when a register is written
to, its value might not be useful after (e.g. it might never be read). However, when a register is read, we
know that its value is useful earlier in the program.
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Using the clash_tree, the set of live registers is computed by induction like this:

get_live_backward_ct (Delta writes reads) live =
union (difference live (list_to_numset writes)) (list_to_numset reads)

get_live_backward_ct (Set cutset) live = cutset
get_live_backward_ct (Branch (Some cutset) ct1 ct2) live = cutset
get_live_backward_ct (Branch None ct1 ct2) live =
union (get_live_backward_ct ct1 live) (get_live_backward_ct ct2 live)

get_live_backward_ct (Seq ct1 ct2) live =
get_live_backward_ct ct1 (get_live_backward_ct ct2 live)

Cutsets provide liveness information which is too precise for the rough liveness intervals that the linear
scan algorithm uses. It also makes proofs harder.

Therefore, we simplify clash_tree into live_tree which does not contain any cutsets, and Delta is split
in two: Writes and Reads.

live_tree =
Writes (num list)
| Reads (num list)
| Branch live_tree live_tree
| Seq live_tree live_tree

Because this transformation loses information, it means that we can’t compute sets of live variables as
accurately as before. However, this is not a problem, since we can compute an over-approximation of the
set of live variables.

Instead of treating cutsets as a fresh set of live registers, they are added to the set of live registers: we
transform cutsets into Reads.

In fact, we don’t lose much information by doing this because cutsets are already live registers: adding
cutsets to the set of live registers is the same as ignoring cutsets.

Therefore, we can transform a clash_tree into a live_tree like this:

get_live_tree (Delta wr rd) =
Seq (Reads rd) (Writes wr)

get_live_tree (Set cutset) =
Reads (numset_to_list cutset)

get_live_tree (Branch None ct1 ct2) =
Branch (get_live_tree ct1) (get_live_tree ct2)

get_live_tree (Branch (Some cutset) ct1 ct2) =
Seq (Reads (numset_to_list cutset))

(Branch (get_live_tree ct1) (get_live_tree ct2))
get_live_tree (Seq ct1 ct2) =
Seq (get_live_tree ct1) (get_live_tree ct2)

The function to compute live variables is now very simple:

get_live_backward (Writes l) live =
difference live (list_to_numset l)

get_live_backward (Reads l) live =
union live (list_to_numset l)

get_live_backward (Branch ct1 ct2) live =
union (get_live_backward ct1 live) (get_live_backward ct2 live)

get_live_backward (Seq ct1 ct2) live =
get_live_backward ct1 (get_live_backward ct2 live)
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The function check_live_tree is like check_clash_tree, but for live_tree.
We can prove the following correctness theorem:

` check_live_tree col (get_live_tree ct) LN LN = Some (livein,flivein)⇒
∃ livein ′ flivein ′. check_clash_tree col ct LN LN = Some (livein ′,flivein ′)

This theorem is proved using the following lemma, which is proved by induction on the clash-tree ct .

` image col (domain live) = domain flive ∧ image col (domain live ′) = domain flive ′ ∧
injective col (domain live ′) ∧
domain live ⊆ domain live ′ ∧
check_live_tree col (get_live_tree ct) live ′ flive ′ = Some (livein ′,flivein ′)⇒
∃ livein flivein.

check_clash_tree col ct live flive = Some (livein,flivein) ∧
domain livein ⊆ domain livein ′

The hypothesis image col (domain live) = domain flive and image col (domain live ′) = domain flive ′ are
invariants maintained by check_clash_tree and check_live_tree. The hypothesis injective col (domain live ′)
is also an invariant maintained by check_clash_tree and check_live_tree.

We also have livein ′ = get_live_backward (get_live_tree ct) live ′ and livein = get_live_backward_ct ct live
(which are properties satisfied by check_clash_tree and check_live_tree). We also saw before that by con-
struction, domain (get_live_backward_ct ct live) ⊆ domain (get_live_backward (get_live_tree ct) live).
This is why the hypothesis domain live ⊆ domain live ′ is here, for the theorem to compose well when
dealing with the induction case ct = Seq ct1 ct2.

4.2 Step 2: get the liveness intervals

4.2.1 The get_intervals function

We will now compute the liveness intervals as described in Section 3.2
The function get_intervals takes a live_tree and returns two int num_map: the beginning and the end

of liveness interval for each register.
This function is very simple: when it treats a Writes the beginning of intervals are extended, when it

treats a Reads the end of intervals are extended.
The function traverses the live_tree backwards, and maintains an integer n which represents the

position in the program. We write it like this:

get_intervals (Writes l) n int_beg int_end =
(n − 1,numset_list_add_if_lt l n int_beg ,numset_list_add_if_gt l n int_end)

get_intervals (Reads l) n int_beg int_end =
(n − 1,int_beg ,numset_list_add_if_gt l n int_end)

get_intervals (Branch lt1 lt2) n int_beg int_end =
let (n2,int_beg2,int_end2) = get_intervals lt2 n int_beg int_end
in
get_intervals lt1 n2 int_beg2 int_end2

get_intervals (Seq lt1 lt2) n int_beg int_end =
let (n2,int_beg2,int_end2) = get_intervals lt2 n int_beg int_end
in
get_intervals lt1 n2 int_beg2 int_end2
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The numset_list_add_if_lt function verifies the following property:

` lookup r (numset_list_add_if_lt l v s) =
if mem r l then
case lookup r s of
None ⇒ Some v
| Some vr ⇒ if v ≤ vr then Some v else Some vr

else lookup r s

The numset_list_add_if_gt function verifies a similar property, with the opposite inequality.
Now, the function which checks a coloration with the liveness intervals is quite simple:

check_intervals f int_beg int_end ⇐⇒
∀ r1 r2.

r1 ∈ domain int_beg ∧ r2 ∈ domain int_beg ∧
interval_intersect (THE (lookup r1 int_beg),THE (lookup r1 int_end))
(THE (lookup r2 int_beg),THE (lookup r2 int_end)) ∧ f r1 = f r2 ⇒
r1 = r2

And we have the following correctness theorem:

` (n_out ,beg_out ,end_out) = get_intervals (fix_domination lt) 0 LN LN ∧
check_intervals f beg_out end_out ⇒
∃ liveout fliveout . check_live_tree f (fix_domination lt) LN LN = Some (liveout ,fliveout)

(the fix_domination function will be explained in Section 4.2.2)
To prove this theorem, we can prove that at every position where a register is live, this position is in

the register’s liveness interval. We can start by proving that the position is less that the end of the liveness
interval:

` (n_out ,beg_out ,end_out) = get_intervals lt n_in beg_in end_in ∧
(∀ r . r ∈ domain live_in ⇒ ∃ v . lookup r end_in = Some v ∧ n_in ≤ v)⇒
check_number_property
(λn live. ∀ r . r ∈ domain live ⇒ ∃ v . lookup r end_out = Some v ∧ n + 1 ≤ v) lt n_in
live_in

The function check_number_property takes a predicate on positions and live variables, and checks if
it is true at every position of a live_tree.

We prove this theorem by induction on live_tree, using a few simple lemmas and the following mono-
tonicity theorem:

` (∀n ′ live ′. n − size_of_live_tree lt ≤ n ′ ∧ P n ′ live ′ ⇒ Q n ′ live ′) ∧
check_number_property P lt n live ⇒
check_number_property Q lt n live

We would like to prove a similar property about the beginning of intervals, but it turns out that the
induction does not work well. The reason why the induction worked well for the end of intervals is that
the algorithm processes the live_tree in a backward manner, so that the position of end of interval of a
register is changed before this register becomes live. It is not true for beginning of intervals: beginning of
intervals are changed after the registers are live. It means that the property we want to prove is not true
locally.
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4.2.2 The get_intervals_withlive function

The following function is a modification of get_intervals, with better invariants:

` (∀ l n int_beg int_end live.
get_intervals_withlive (Writes l) n int_beg int_end live =
(n − 1,numset_list_add_if_lt l n int_beg ,numset_list_add_if_gt l n int_end)) ∧

(∀ l n int_beg int_end live.
get_intervals_withlive (Reads l) n int_beg int_end live =
(n − 1,numset_list_delete l int_beg ,numset_list_add_if_gt l n int_end)) ∧

(∀ lt1 lt2 n int_beg int_end live.
get_intervals_withlive (Branch lt1 lt2) n int_beg int_end live =
let (n2,int_beg2,int_end2) = get_intervals_withlive lt2 n int_beg int_end live;
(n1,int_beg1,int_end1) =
get_intervals_withlive lt1 n2 (difference int_beg2 live) int_end2 live

in
(n1,
difference int_beg1
(union (get_live_backward lt1 live) (get_live_backward lt2 live)),int_end1)) ∧

∀ lt1 lt2 n int_beg int_end live.
get_intervals_withlive (Seq lt1 lt2) n int_beg int_end live =
let (n2,int_beg2,int_end2) = get_intervals_withlive lt2 n int_beg int_end live;
(n1,int_beg1,int_end1) =
get_intervals_withlive lt1 n2 int_beg2 int_end2 (get_live_backward lt2 live)

in
(n1,int_beg1,int_end1)

Here, we removed the set of live variables to int_beg , to have the invariant that domain int_beg and
domain live are disjoint. This is the theorem stating that get_intervals_withlive preserves this invariant:

` (n_out ,beg_out ,end_out) = get_intervals_withlive lt n_in beg_in end_in live ∧
(∀ r . r ∈ domain live ⇒ r /∈ domain beg_in)⇒
∀ r . r ∈ domain (get_live_backward lt live)⇒ r /∈ domain beg_out

Intuitively, we don’t lose information by doing this because in a well-formed program, when an in-
struction reads the value of a register, the register has a value, so it was written to before in the program,
independently of the path taken in the control-flow graph. We can also formulate this by saying that in a
well-formed program, no variable lives at the beginning.

It means that during the execution of get_intervals, when a register r is live, the beginning of its
interval will be overwritten, hence this value is not important and we can delete it.

We can think of a value missing in int_beg meaning that the beginning of interval at the end of the
execution of the algorithm will be less that the number associated with the current position in the program.

This modification allows us to prove this theorem by induction:

` (n_out ,beg_out ,end_out) = get_intervals_withlive lt n_in beg_in end_in live_in ∧
(∀ r v . lookup r beg_in = Some v ⇒ n_in ≤ v) ∧ (∀ r . r ∈ domain live_in ⇒ r /∈ domain beg_in)⇒
check_number_property
(λn live. ∀ r . r ∈ domain live ⇒ (case lookup r beg_out of None ⇒ n_out | Some x ⇒ x ) ≤ n)
lt n_in live_in

Based on the previous intuition, we would like to prove that on a well-formed program, those two
functions compute the same thing.
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But before that: do we actually have a proof that programs are well-formed, meaning that there are
no live variables at the beginning of the program?

I found that the easiest way to ensure that this property is true is to force it, using the following
function:

` fix_domination lt =
let live = get_live_backward lt LN
in
if live = LN then lt

else Seq (Writes (map fst (toAList live))) lt

4.2.3 Proving that the two functions compute the same thing

Let’s name int_end the end of intervals (which are computed the same way in both functions),
int_beg the beginning of intervals produced by get_intervals, and int_beg_withlive the one produced by
get_intervals_withlive.

It is easy to prove by induction that when int_beg and int_beg_withlive share a common key, then the
values associated with this key are equal:

` (n1,beg1,end1) = get_intervals lt n beg end ∧
(n2,beg2,end2) = get_intervals_withlive lt n beg ′ end live ∧
(∀ r v . lookup r beg = Some v ⇒ n ≤ v) ∧ (∀ r v . lookup r beg ′ = Some v ⇒ n ≤ v) ∧
(∀ r v1 v2. lookup r beg = Some v1 ∧ lookup r beg ′ = Some v2 ⇒ v1 = v2)⇒
∀ r v1 v2. lookup r beg1 = Some v1 ∧ lookup r beg2 = Some v2 ⇒ v1 = v2

Now we only have to prove that domain int_beg = domain int_beg_withlive
We define the set of registers in a live_tree like this:

live_tree_registers (Writes l) = set l
live_tree_registers (Reads l) = set l
live_tree_registers (Branch lt1 lt2) = live_tree_registers lt1 ∪ live_tree_registers lt2
live_tree_registers (Seq lt1 lt2) = live_tree_registers lt1 ∪ live_tree_registers lt2

We will prove the inclusions:
live_tree_registers lt ⊂ domain int_end ⊂ domain int_beg_withlive ⊂ domain int_beg ⊂ live_tree_registers lt

Proving domain int_beg ⊂ live_tree_registers lt is easy by induction with the following theorem:

` (n_out ,beg_out ,end_out) = get_intervals lt n_in beg_in end_in ⇒
domain beg_out ⊆ domain beg_in ∪ live_tree_registers lt

Proving domain int_beg_withlive ⊂ domain int_beg is easy by induction with the following theorem:

` (n1,beg_out1,end1) = get_intervals_withlive lt n beg_in1 end live ∧
(n2,beg_out2,end2) = get_intervals lt n beg_in2 end ∧
domain beg_in1 ⊆ domain beg_in2 ⇒
domain beg_out1 ⊆ domain beg_out2

Proving live_tree_registers lt ⊂ domain int_end is easy with the following theorem:

` (n_out ,beg_out ,end_out) = get_intervals_withlive lt n_in beg_in end_in live_in ⇒
domain end_in ∪ live_tree_registers lt ⊆ domain end_out

The only proof left is live_tree_registers lt ⊂ domain int_beg_withlive. It turns out it was quite difficult.
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Before proving this inclusion, we prove the following lemma which says that get_intervals_withlive is
Lipschitz-continuous1

` (nout1,begout1,endout1) = get_intervals_withlive lt n1 beg1 end1 live ∧
(nout2,begout2,endout2) = get_intervals_withlive lt n2 beg2 end2 live ∧
domain beg2 ⊆ domain beg1 ∪ domain s ⇒
domain begout2 ⊆ domain begout1 ∪ domain s

It allows us to prove that domain int_end ⊂ domain int_beg_withlive:

` domain end_in ⊆ domain beg_in ∪ domain live_in ∧
(n_out ,beg_out ,end_out) = get_intervals_withlive lt n_in beg_in end_in live_in ⇒
domain end_out ⊆ domain beg_out ∪ domain (get_live_backward lt live_in)

Proof sketch it is proved by induction on lt . The only hard case is lt = Branch lt1 lt2. Let’s write
(n2,beg2,end2) = get_intervals_withlive lt2 n_in beg_in end_in live_in
and
(n1,beg1,end1) = get_intervals_withlive lt1 n2 (difference beg2 live_in) end2 live_in.
By the induction hypothesis, we have
domain end2 ⊆ domain beg2 ∪ domain (get_live_backward lt2 live_in).
Unfortunately, we can’t use the induction hypothesis for lt1 since we don’t have the hypothesis
domain end2 ⊆ domain (difference beg2 live_in) ∪ domain live_in.
We can force the hypothesis: let’s write
(n1,beg ′

1,end1) =
get_intervals_withlive lt1 n2 (difference (union beg2 (get_live_backward lt2 live_in)) live_in) end2 live_in.
We can see that
domain (difference (union beg2 (get_live_backward lt2 live_in)) live_in) ∪ domain live_in =
domain beg2 ∪ domain (get_live_backward lt2 live_in) ∪ domain live_in
which contains end2 as we saw at the beginning of the proof.
From this, we can deduce using the induction hypothesis that
domain end1 ⊆ domain beg ′

1 ∪ domain (get_live_backward lt1 live_in)
and by the Lipschitz-continuity theorem, we have
domain beg ′

1 ⊆ domain beg1 ∪ domain (get_live_backward lt2 live_in).
Therefore,
domain end1 ⊆
domain beg1 ∪ domain (get_live_backward lt1 live_in) ∪ domain (get_live_backward lt2 live_in)
which proves the theorem. �

Using all the previous lemmas, we can prove the following theorem:

` (n,beg ,end) = get_intervals_withlive (fix_domination lt) 0 LN LN LN ∧
(n ′,beg ′,end ′) = get_intervals (fix_domination lt) 0 LN LN⇒
∀ r . lookup r beg = lookup r beg ′

4.3 Step 3: do the allocation

4.3.1 Modifications to the original algorithm

In section 3.4, we saw that CakeML’s register allocation needs a few features not covered by the original
linear scan register allocation algorithm [8].

1When f is an increasing function, the Lipschitz-continuity with a constant equal to 1 translates to ∀x∀y > 0, f(x+ y) ≤
f(x) + y. Here the theorem says something like f(T ∪ S) ⊂ f(T ) ∪ S
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These features are:

• physical registers should be allocated themselves (e.g. for calling conventions)

• stack registers should be on the stack

• the moves list is a list of pair of registers that should be allocated to the same register if possible
(to remove useless "move" instructions)

• the forced list is a list of pair of registers that can’t be allocated to the same register

• registers that are spilled on the stack should be allocated in a "smart" way to minimise the stack-
frame size

Small stack-frame size We used the classical solution to optimize the stack-frame size, which is to do
the allocation in two passes. The first pass is the allocation as we saw previously, with a new fresh register
on the stack each time we spill a register. During the second pass, we run the same algorithm only on the
registers spilled on the stack to reallocate them in a smarter way.

The moves list The requirement that some pair of registers should be allocated to the same register
if possible is easy to satisfy: before choosing a color from the color pool, check if a color of one of the
registers in the moves list is available.

Stack registers The requirement that stack registers should be allocated on the stack is also easy to
satisfy: when we encounter a such register, we can simply spill it.

The forced list The requirement that some pair of registers should not be allocated to the same register
can be satisfied by adding some sanity check when we choose a color from the color-pool.

Physical registers The requirement that physical registers should be allocated to themselves is harder
to satisfy. When we allocate the physical register reg which should have the color col , and that col is used
by a register reg2 in the active list, what should we do? It’s not possible to give a smart color to reg2 to
free the color col : the only option is to spill reg2. But that’s a problem since it would produce very bad
allocation.

I found a good solution to this, namely, to forget about this requirement, and fix the coloration
afterward to fit this requirement. How do we fix the coloration? Afterward, we find a permutation of
colors to ensure that each physical register is allocated to itself. A necessary and sufficient condition for
a such permutation to exist, is that the physical registers must have different colors.

In summary: to ensure that physical registers are allocated to themselves, we first do the allocation
and ensure that physical registers all have distinct colors, and we do a color permutation afterwards.
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4.3.2 The state and invariants used in the linear scan algorithm

The internal state of the algorithm is represented by the two following records:
linear_scan_state = 〈|
active : (int × num) list;
colorpool : num list;
phycols : num_set;
colornum : num;
colormax : num;
stacknum : num
|〉

linear_scan_hidden_state = 〈|
colors : num list
|〉

active is the list of active registers: the second component of the pair is the active register, the first
component is the register’s end of liveness interval. This list is sorted by increasing end of liveness interval.
colorpool is the pool of available colors, along with the colors c such that colornum ≤ c < colormax. phycols
is the set of colors used by the physical registers (to ensure the colors are all distinct). stacknum is the
color of a fresh register to spill on the stack.

colors is an array such that its regth element is the color of reg . In the state it is represented as a
functional list, but when the HOL function is translated into a CakeML AST during the bootstrap process,
it is represented as a static array with O(1) element lookup. This is why colors is in a separate record.
This record is said "hidden" because it is used in a state monad.

This state has a lot of invariants that are preserved during the algorithm. The invariants depend
on several parameters: int_beg and int_end the beginning and end of liveness intervals, st and sth the
state and the hidden state, the forced list, a list l of register that were processed by the algorithm, pos
representing the position of the beginning of liveness interval of the last processed register.

The most important invariants are the one directly linked to the final correctness theorem:

• two different registers in l with intersecting liveness intervals must not have the same color

• two different registers in l and in the forced list must not have the same color

Some invariants describe the content of the active list:

• the active list is sorted by its first component

• all registers in the active list are also present in the l list

• the color of registers present in the active list are strictly lower that colornum

• for each element of active, the first component is equal to the end of liveness interval of the second
component

• if a register of l is not spilled to the stack and its end of liveness interval is greater than pos then it
is in the active list

• if a register r is in active then pos is less than its end of liveness interval incremented by one2

Some invariant describe the relationship between the colors manipulated by the algorithm:

• the colors of colorpool concatenated with the colors of the registers of active are all distinct3

• the color of physical registers are all distinct
2the increment is necessary to prove the correctness of ExprireOldIntervals by induction, in the case we are removing

several intervals with the same endpoint
3this invariant also says that the colors in colorpool and the colors of registers in active are disjoint
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And then there are miscellaneous invariants:

• the color of every register in l is strictly less than stacknum

• every color in colorpool is strictly less than colornum

• colornum is less than colormax which is less than stacknum

• if the color of a register of l is less than colormax then it is less than colornum

• the beginning of liveness interval of every register in l is less than pos

• phycols is the set of colors of registers reg in l such that reg is a physical register and reg is not
spilled to the stack

• every register of l is strictly less than the length of colors

The invariants have an additional parameter mincol which is the minimal color used in the algorithm.
It is useful to prove that the second pass that reallocates spilled registers keeps registers on the stack. It
follows the following invariants:

• mincol is less than colornum

• mincol is less than every color in colorpool

• mincol is less than the color of every register in active

The invariants are checked by the predicate good_linear_scan_state int_beg int_end st sth l pos
forced mincol

4.3.3 Implementation of the linear scan algorithm

In this section, we present the different functions used to implement the linear scan algorithm, along
with the correctness theorems. The correctness theorems usually says that the function doesn’t fail (i.e.
there is no array out-of-bounds), that the invariants are preserved, that length colors and colormax are not
changed, and express which colors are changed.

The remove_inactive_intervals beg st sth function corresponds to the ExpireOldIntervals function
presented in Section 3.2: it removes active intervals whose endpoint is before beg .

It has the following correctness theorem (notice that pos is replaced by beg in the conclusion):

` good_linear_scan_state int_beg int_end st sth l pos forced mincol ∧
pos ≤ beg ⇒
∃ stout .

(Success stout ,sth) = remove_inactive_intervals beg st sth ∧
good_linear_scan_state int_beg int_end stout sth l beg forced mincol ∧
stout .colormax = st .colormax

find_color st forbidden tries to find a color in the colorpool which is not in the set forbidden. When it
succeeds, it returns (stout ,Some col) where stout is the output state. The output color is removed from
the colorpool in the output state.

` good_linear_scan_state int_beg int_end st sth l pos forced mincol ∧
domain forbidden ⊆ { el r sth.colors | mem r l } ∧
find_color st forbidden = (stout ,Some col)⇒
good_linear_scan_state int_beg int_end
(stout with colorpool := col ::stout .colorpool) sth l pos forced mincol ∧

col < stout .colornum ∧ col /∈ domain forbidden ∧
st = stout with 〈|colorpool := st .colorpool; colornum := st .colornum|〉
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color_register st reg col rend sth assign the color col to the register reg . It updates the active list with
the end of interval rend . It has the following correctness theorem:

` good_linear_scan_state int_beg int_end st sth l pos forced mincol ∧
forbidden_is_from_map_color_forced forced l sth.colors reg forbidden ∧ col /∈ domain forbidden ∧
(is_phy_var reg ⇒ domain st .phycols ⊆ domain forbidden) ∧
¬mem col (st .colorpool ++ map (λ (e,r). el r sth.colors) st .active) ∧
the 0 (lookup reg int_beg) = pos ∧ the 0 (lookup reg int_beg) ≤ the 0 (lookup reg int_end) ∧
col < st .colornum ∧ mincol ≤ col ∧ reg < length sth.colors ∧ ¬mem reg l ⇒
∃ stout sthout .

(Success stout ,sthout) = color_register st reg col (the 0 (lookup reg int_end)) sth ∧
good_linear_scan_state int_beg int_end stout sthout (reg ::l) pos forced mincol ∧
length sthout .colors = length sth.colors ∧
(∀ r . r 6= reg ⇒ el r sth.colors = el r sthout .colors) ∧ stout .colormax = st .colormax

The hypothesis of this theorem mostly says that reg and col are compatible with the invariants. An
interesting part is the forbidden_is_from_map_color_forced which says that the forbidden set contains
the color of registers that conflicts with reg in forced .

spill_register st reg sth spills the register reg on a fresh stack location. It has the following correctness
theorem:

` (¬is_phy_var reg ∨ ¬mem reg l) ∧
good_linear_scan_state int_beg int_end st sth l pos forced mincol ∧
reg < length sth.colors ∧ the 0 (lookup reg int_beg) ≤ pos ⇒
∃ stout sthout .

(Success stout ,sthout) =
spill_register (st with active := filter (λ (e,r). r 6= reg) st .active) reg sth ∧

good_linear_scan_state int_beg int_end stout sthout (reg ::l) pos forced mincol ∧
length sthout .colors = length sth.colors ∧
(∀ r . r 6= reg ⇒ el r sth.colors = el r sthout .colors) ∧
stout .colormax = st .colormax ∧ st .colormax ≤ el reg sthout .colors

This theorem is a bit more complex than the other functions, because every function except this one can
have the hypothesis ¬mem reg l . However as we see in the SpillInterval function in Section 3.2 we can
spill a register that is in the active list (and therefore in l).
If ¬mem reg l then st .active = filter (λ (e,r). r 6= reg) st .active and then this theorem is similar to the
usual ones. However, if mem reg l we need the requirement ¬is_phy_var reg because this function does
not update phycols4. When we have mem reg l then reg needs to be removed to the active list: using the
filter function is a brutal way to do this5.

The find_spill st forbidden reg rend force sth function corresponds to the SpillInterval function in
Section 3.2. force is a boolean which says that the function should not spill reg to the stack if possible
(it is best-effort). If the function "steals" the color of an active register, the function makes sure that it
is not in the forbidden set. It has the following correctness theorem, which is similar to color_register’s
correctness theorem.

4it could update phycols, but it is not done because in practice the hypothesis mem reg l ⇒ ¬is_phy_var reg is satisfied
5hopefully, the filter function only appears in the proof
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` ¬mem reg l ∧
good_linear_scan_state int_beg int_end st sth l (the 0 (lookup reg int_beg)) forced mincol ∧
reg < length sth.colors ∧ forbidden_is_from_map_color_forced forced l sth.colors reg forbidden ∧
(is_phy_var reg ⇒ domain st .phycols ⊆ domain forbidden) ∧
the 0 (lookup reg int_beg) ≤ the 0 (lookup reg int_end)⇒
∃ stout sthout .

(Success stout ,sthout) = find_spill st forbidden reg (the 0 (lookup reg int_end)) force sth ∧
good_linear_scan_state int_beg int_end stout sthout (reg ::l) (the 0 (lookup reg int_beg))

forced mincol ∧ length sthout .colors = length sth.colors ∧
(∀ r . ¬mem r (reg ::l)⇒ el r sthout .colors = el r sth.colors) ∧
(∀ r . mem r l ∧ is_phy_var r ⇒ el r sthout .colors = el r sth.colors) ∧
stout .colormax = st .colormax

apply_reg_exchange l sth takes a list l of physical registers, and do the exchange described in Sec-
tion 4.3.1. The following correctness theorem says that the registers in l are assigned to the right registers,
and that the exchange preserves the fact that two registers have the same color.

` all_distinct (map (λ r . el r sth.colors) l) ∧ (∀ r . mem r l ⇒ is_phy_var r) ∧
(∀ r . mem r l ⇒ r < length sth.colors)⇒
∃ sthout .

(Success (),sthout) = apply_reg_exchange l sth ∧ length sthout .colors = length sth.colors ∧
(∀ r1 r2.

r1 < length sth.colors ∧ r2 < length sth.colors⇒
el r1 sthout .colors = el r2 sthout .colors⇒ el r1 sth.colors = el r2 sth.colors) ∧

∀ r . mem r l ⇒ el r sthout .colors = r div 2

In reality, the theorem has a more complex conclusion which gives information about how it preserves the
fact that some registers are on the stack, but it was omitted here for simplicity.

linear_reg_alloc_intervals int_beg int_end k forced moves reglist_unsorted sth is the full algorithm. It
does a first pass which corresponds to the original linear scan algorithm [8], then do the color exchange for
physical registers that are not on the stack. Then, it runs a second pass for registers that were spilled to the
stack and stack registers, then do the exchange for physical registers that are on the stack. This function
has the following correctness theorem, which looks a lot like the correctness theorem in the original register
allocator as seen in Section 3.4:

` every (λ (r1,r2). mem r1 reglist ∧ mem r2 reglist) forced ∧
every (λ (r1,r2). r1 < length sth.colors ∧ r2 < length sth.colors) (map snd moves) ∧
every (λ r . r < length sth.colors) reglist ∧
every (λ r . the 0 (lookup r int_beg) ≤ the 0 (lookup r int_end)) reglist ∧
all_distinct reglist ∧ set reglist = domain int_beg ∧ domain int_beg = domain int_end ⇒
∃ sthout .

(Success (),sthout) =
linear_reg_alloc_intervals int_beg int_end k forced moves reglist sth ∧

check_intervals (λ r . el r sthout .colors) int_beg int_end ∧
every

(λ r .
if is_phy_var r then el r sthout .colors = r div 2
else if is_stack_var r then k ≤ el r sthout .colors
else T) reglist ∧

every (λ (r1,r2). el r1 sthout .colors = el r2 sthout .colors⇒ r1 = r2) forced ∧
length sthout .colors = length sth.colors
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linear_scan_reg_alloc k moves ct forced is a function that combines the previous steps. It has exactly
the same correctness theorem as the other register allocator seen in Section 3.4

5 Evaluation

The linear scan algorithm is compared against the iterated register coalescing (IRC) algorithm [1], and
a simpler allocator which corresponds to the IRC algorithm without coalescing.

It is compared in term of compilation time, and in term of quality of the produced code on the standard
benchmarks used for CakeML.
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Figure 1: Compilation speed. The time in normalized on the time taken by the simple algorithm

We can see here that the linear scan algorithm is a bit slower than the simple allocator, but about
three time faster than the IRC algorithm.
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Figure 2: Produced code speed. The time in normalized on the time took by the simple algorithm

We can see here that the linear scan algorithm produces code of bad quality, even compared to the
simple algorithm.

Why do we have such results, when the original paper announces that the code produced is about
10% slower than the code generated by the IRC algorithm [8, sec 5.3.2]? We found that the culprit
were physical registers, more precisely calling conventions. The calling convention uses the first physical
registers as the arguments of the function called. If in a program a function is called at the beginning, and
a other function is called at the end, the liveness interval of the first physical register might be for example
{1, 2, 3, 1001, 1002, 1003} ⊂ [1, 1003]. This means that the physical register might live for a very short
time, but its liveness interval will be huge, and this physical register can’t be used by another register in
the middle of the program.
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The solution to this problem is to do the allocation after the SSA pass, but before the calling convention
is enforced. For this, we have to split a function in two parts since the SSA-form and the calling convention
are enforced by the same function.

6 Future work

6.1 Split the SSA-form and the calling conventions

As we saw in Section 5, in order to produce code of decent quality we must split in two parts the
function that transforms the program in SSA form and enforces calling conventions

6.2 Optimise the constant of the algorithm

There are a few things that can be done faster in the whole algorithm:

• we can compute liveness intervals directly on a clash_tree (the live_tree was useful for the proofs)

• we can use static arrays to store the endpoints of the liveness intervals (instead of a int num_map)

• the sorting function used is a quicksort on functional lists: we could write a faster version using
static arrays

6.3 Remove the fix_domination function

Since proving the property that the set of live variables is empty at the beginning of the program is
not easy, we force it using the function fix_domination. Proving the domination property would allow to
remove this function call, which is in practice useless.

6.4 Use the fact that we work on a SSA-like AST

The WordLang AST in CakeML almost has an SSA form6, and the live variables have nice properties
in SSA-form.

It is possible to prove that in a program in SSA form, when two registers interfere, they interfere at
the definition of one of the two registers [2, lemmas 11 & 12].

The reason we filled the liveness holes to have one big interval was to have the following property: two
intervals intersects iff one of them contains the starting point of the other. It turns out that for programs
in SSA form, this property is true even if the lifetime has holes.

Using this property, it is possible to produce better allocation [12]

7 Conclusion

Before this internship, I had a bit of experience with Coq, but I never really went beyond some toy
examples.

During this internship, I learned to use HOL4 and I saw how verification works on a large program.
I implemented and verified end-to-end a new register allocation algorithm, which will enable CakeML to
have shorter compilation time.

I realised that often, the hard part was not to do the actual proofs, but to find the theorems I needed
to prove: for most theorems, once I found the correct invariants, the proofs were mostly straightforward.

It was a very interesting and rewarding experience. It changed the way I view maths, because I had
to be absolutely rigorous since the computer doesn’t accept any hand-waving arguments.

6"almost" meaning that φ-functions are already resolved: some variable might be assigned twice : at the end of both
branches of a condition
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