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Introduction

The destination of my PhD:
▶ become a cryptographic protocol analyst
▶ produce a machine-checked security proof of MLS (secure group messaging protocol)

The journey:
▶ help to fix flaws in MLS before its standardization
▶ identify and fill gaps in formal security proofs (Comparse)
▶ improve tools to conduct symbolic security analysis at scale (DY∗)
▶ . . .

Goal of this talk: share lessons I’ve learned
▶ for protocol analysts
▶ for protocol designers
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Analyzing cryptographic protocols

Traditional pen & paper proofs:
several proof techniques (game-hop, UC, SSP, . . . )
requires expert humans to check the proof

Machine-checked computational proofs:
several tools (CryptoVerif, EasyCrypt, Squirrel, Owl, ProofFrog, . . . )
same guarantees as pen & paper proofs
limited automation

Machine-checked symbolic proofs:
several tools (ProVerif, Tamarin, DY∗, . . . )
good automation
symbolic model is less precise than computational model
many successes during the last decade (TLS 1.3, Signal, . . . )
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Our approach for protocol analysis

F∗ specification

Security proofs
(for TreeSync and TreeKEM)

DY∗

Bit-precise
implementation

Interoperability
tests

(4 implementations)

HACL ∗

Increase
confidence
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Symbolic security analysis of MLS
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Towards a modular analysis of MLS

MLS specification (RFC 9420): 120 pages
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Modularizing MLS
(“TreeSync: . . . ”, USENIX Security ’23, https://ia.cr/2022/1732)

TreeSync

TreeKEM

TreeDEM

evolve group

update keys

send / receive
message

Authenticated
state

Epoch keys

Possible thanks to
∼30 lines change

in the specification
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Lesson for protocol designers:
modularize protocols

▶ Collaborate with protocol analysts
▶ Bonus: protocol is easier to understand
▶ Bonus: help implementers
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Proving security of TreeSync
(“TreeSync: . . . ”, USENIX Security ’23, https://ia.cr/2022/1732)

▶ prove agreement theorem (incl. membership agreement)
▶ relies on minimal assumptions on TreeKEM and TreeDEM

. . . however these assumption were initially not true

9
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Signature ambiguity in MLS draft 12
(“TreeSync: . . . ”, USENIX Security ’23, https://ia.cr/2022/1732)

TreeSync

sig = sign(sk, serializeT1(msg1))
verify(pk, sig, serializeT1(msg1))

TreeDEM

sig = sign(sk, serializeT2(msg2))
verify(pk, sig, serializeT2(msg2))

Same key

Different types

What if serializeT1(msg1) = serializeT2(msg2)?
First step for an attack:
TreeDEM signature on msg2 is a signature forgery on msg1 in TreeSync!
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Two questions

From a protocol designer perspective:
▶ How did this attack survive 4 years and 12 drafts of the MLS standard,

although this is a classic issue known as “lack of domain-separation”?

Our answer:
▶ there is no rigorous definition for “domain-separation”
▶ it is hard to enforce in a large standard

From a protocol analyst perspective:
▶ Why was this attack not caught by previous pen & paper security proofs?
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Why the attack was not caught by previous security proofs?

Mathematical model

Security properties

Security proof

In mathematical models of MLS: no precise message format

“ETK: External-Operations TreeKEM and the Security of MLS in RFC 9420”, C. Cremers, E. Günsay, V. Wesselkamp, M. Zhao
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Lesson for protocol analysts:
reason on precise mathematical models

▶ catch subtle attacks
▶ bonus: also provide a reference implementation

Problem: reasoning on message formats makes proof more complex

Our solution:
▶ define a rigorous notion of “secure formats”
▶ secure formats can soundly be abstracted away
▶ make a tool to check if a format is secure (Comparse)
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Security critical message formats
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Security critical message formats
(“Comparse: . . . ”, ACM CCS 2023, https://ia.cr/2023/1390)

High-level
protocol data

Hash
HPKE
KDF
AEAD

Signature
MAC
. . .

Binary
data

(format)

Cryptographic assumptions
(from the literature)

Security properties actually used
(Pen & Paper, ProVerif, Tamarin, . . . )

Format properties
(Comparse)
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A rigorous approach toward domain separation
(“Comparse: . . . ”, ACM CCS 2023, https://ia.cr/2023/1390)

We build a systematic approach toward secure formats and “good domain-separation”.

For example, we define “good domain-separation” for signatures as:

▶ format must be injective (i.e. parseable)
▶ choose one format per signature key (across all versions and extensions of the protocol)
▶ format must not depend on external context

This is a sufficient and necessary condition to abstract formats away in signatures!

High-level

Bytes b

m1 m2

sign verify ✓

!△

TreeSync

Bytes

TreeDEM

b

m1

m2

sign

verify ✓

!△
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Good domain-separation in real-world protocols
Claim: in real-world protocols, data sent on the network have “good domain-separation”.

TLS 1.3 Handshake message, properly domain-separated across versions since 1996 (SSLv3)
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Ugly message formats in real-world protocols

In the same specification, TLS 1.3 Transcript hash
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Lesson for protocol designers:
love all message formats equally

▶ rule out a whole class of attacks
▶ help protocol analysts willing to model them precisely
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Symbolic security of MLS: TreeKEM
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Proving security of TreeKEM
(“TreeKEM: . . . ”, to appear at IEEE S&P 2025, https://ia.cr/2025/410)

ha
sh

ha
sh

encrypt

encrypt

We prove a confidentiality theorem on TreeKEM.
Challenges:
▶ requires recursive data types
▶ inductive proofs
▶ an unbounded sequence of key derivations
▶ an unbounded sequence of public-key encryptions (and internally, KEMs)

DY∗ is a tool of choice for these challenges, still we had to heavily improve it.
21
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Lesson for protocol analysts:
novel protocols may require new tools

// TODO: insert “modern problems require modern solutions” meme

▶ can’t have “one tool to rule them all”
▶ similar to various pen & paper proof frameworks (game-hop, UC, SSP, . . . )
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Conclusion

▶ we produced machine-checked security proofs for parts of MLS (TreeSync & TreeKEM)
▶ developed a methodology to reason on a precise model of cryptographic standards
▶ shed light on the importance of message formatting in cryptographic protocols
▶ and propose a rigorous approach to domain-separation
▶ we improved the tools to perform machine-checked symbolic security proofs

https://github.com/Inria-Prosecco/mls-star

https://ia.cr/2022/1732 (TreeSync)
https://ia.cr/2023/1390 (Comparse)
https://ia.cr/2025/410 (TreeKEM)

theophile.wallez@inria.fr
https://www.twal.org/
@twal.org
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