
Formally analyzing
a cryptographic protocol standard

(or: how MLS kept this PhD student busy for three years)

Théophile Wallez, Inria Paris
+ work of co-authors

1



Introduction

The destination of my PhD:
▶ become a cryptographic protocol analyst
▶ produce a machine-checked security proof of MLS (secure group messaging protocol)

The journey:
▶ help to fix flaws in MLS before its standardization
▶ identify and fill gaps in formal security proofs (Comparse)
▶ improve tools to conduct symbolic security analysis at scale (DY∗)
▶ . . .

Goal of this talk: share lessons I’ve learned
▶ for protocol analysts
▶ for protocol designers

2



Introduction

The destination of my PhD:
▶ become a cryptographic protocol analyst
▶ produce a machine-checked security proof of MLS (secure group messaging protocol)

The journey:
▶ help to fix flaws in MLS before its standardization
▶ identify and fill gaps in formal security proofs (Comparse)
▶ improve tools to conduct symbolic security analysis at scale (DY∗)
▶ . . .

Goal of this talk: share lessons I’ve learned
▶ for protocol analysts
▶ for protocol designers

2



Introduction

The destination of my PhD:
▶ become a cryptographic protocol analyst
▶ produce a machine-checked security proof of MLS (secure group messaging protocol)

The journey:
▶ help to fix flaws in MLS before its standardization
▶ identify and fill gaps in formal security proofs (Comparse)
▶ improve tools to conduct symbolic security analysis at scale (DY∗)
▶ . . .

Goal of this talk: share lessons I’ve learned
▶ for protocol analysts
▶ for protocol designers

2



Analyzing cryptographic protocols

Traditional pen & paper proofs:
several proof techniques (game-hop, UC, SSP, . . . )
requires expert humans to check the proof

Machine-checked computational proofs:
several tools (CryptoVerif, EasyCrypt, Squirrel, Owl, ProofFrog, . . . )
same guarantees as pen & paper proofs
limited automation

Machine-checked symbolic proofs:
several tools (ProVerif, Tamarin, DY∗, . . . )
good automation
symbolic model is less precise than computational model
many successes during the last decade (TLS 1.3, Signal, . . . )

3



Analyzing cryptographic protocols

Traditional pen & paper proofs:
several proof techniques (game-hop, UC, SSP, . . . )
requires expert humans to check the proof

Machine-checked computational proofs:
several tools (CryptoVerif, EasyCrypt, Squirrel, Owl, ProofFrog, . . . )
same guarantees as pen & paper proofs
limited automation

Machine-checked symbolic proofs:
several tools (ProVerif, Tamarin, DY∗, . . . )
good automation
symbolic model is less precise than computational model
many successes during the last decade (TLS 1.3, Signal, . . . )

3



Analyzing cryptographic protocols

Traditional pen & paper proofs:
several proof techniques (game-hop, UC, SSP, . . . )
requires expert humans to check the proof

Machine-checked computational proofs:
several tools (CryptoVerif, EasyCrypt, Squirrel, Owl, ProofFrog, . . . )
same guarantees as pen & paper proofs
limited automation

Machine-checked symbolic proofs:
several tools (ProVerif, Tamarin, DY∗, . . . )
good automation
symbolic model is less precise than computational model
many successes during the last decade (TLS 1.3, Signal, . . . )

3



Our approach for protocol analysis

F∗ specification

Security proofs
(for TreeSync and TreeKEM)

DY∗

Bit-precise
implementation

Interoperability
tests

(4 implementations)

HACL ∗

Increase
confidence

4



Our approach for protocol analysis

F∗ specification

Security proofs
(for TreeSync and TreeKEM)

DY∗

Bit-precise
implementation

Interoperability
tests

(4 implementations)

HACL ∗

Increase
confidence

4



Symbolic security analysis of MLS

5



Towards a modular analysis of MLS

MLS specification (RFC 9420): 120 pages
6



Towards a modular analysis of MLS

MLS specification (RFC 9420): 120 pages
6



Towards a modular analysis of MLS

MLS specification (RFC 9420): 120 pages
6



Towards a modular analysis of MLS

MLS specification (RFC 9420): 120 pages
6



Modularizing MLS
(“TreeSync: . . . ”, USENIX Security ’23, https://ia.cr/2022/1732)

TreeSync

TreeKEM

TreeDEM

evolve group

update keys

send / receive
message

Authenticated
state

Epoch keys

Possible thanks to
∼30 lines change

in the specification

7

https://ia.cr/2022/1732


Modularizing MLS
(“TreeSync: . . . ”, USENIX Security ’23, https://ia.cr/2022/1732)

TreeSync

TreeKEM

TreeDEM

evolve group

update keys

send / receive
message

Authenticated
state

Epoch keys

Possible thanks to
∼30 lines change

in the specification

7

https://ia.cr/2022/1732


Lesson for protocol designers:
modularize protocols

▶ Collaborate with protocol analysts
▶ Bonus: protocol is easier to understand
▶ Bonus: help implementers

8



Proving security of TreeSync
(“TreeSync: . . . ”, USENIX Security ’23, https://ia.cr/2022/1732)

▶ prove agreement theorem (incl. membership agreement)
▶ relies on minimal assumptions on TreeKEM and TreeDEM

. . . however these assumption were initially not true

9

https://ia.cr/2022/1732


Proving security of TreeSync
(“TreeSync: . . . ”, USENIX Security ’23, https://ia.cr/2022/1732)

▶ prove agreement theorem (incl. membership agreement)
▶ relies on minimal assumptions on TreeKEM and TreeDEM

. . . however these assumption were initially not true

9

https://ia.cr/2022/1732


Signature ambiguity in MLS draft 12
(“TreeSync: . . . ”, USENIX Security ’23, https://ia.cr/2022/1732)

TreeSync

sig = sign(sk, serializeT1(msg1))
verify(pk, sig, serializeT1(msg1))

TreeDEM

sig = sign(sk, serializeT2(msg2))
verify(pk, sig, serializeT2(msg2))

Same key

Different types

What if serializeT1(msg1) = serializeT2(msg2)?
First step for an attack:
TreeDEM signature on msg2 is a signature forgery on msg1 in TreeSync!

10

https://ia.cr/2022/1732


Signature ambiguity in MLS draft 12
(“TreeSync: . . . ”, USENIX Security ’23, https://ia.cr/2022/1732)

TreeSync

sig = sign(sk, serializeT1(msg1))
verify(pk, sig, serializeT1(msg1))

TreeDEM

sig = sign(sk, serializeT2(msg2))
verify(pk, sig, serializeT2(msg2))

Same key

Different types

What if serializeT1(msg1) = serializeT2(msg2)?
First step for an attack:
TreeDEM signature on msg2 is a signature forgery on msg1 in TreeSync!

10

https://ia.cr/2022/1732


Signature ambiguity in MLS draft 12
(“TreeSync: . . . ”, USENIX Security ’23, https://ia.cr/2022/1732)

TreeSync

sig = sign(sk, serializeT1(msg1))
verify(pk, sig, serializeT1(msg1))

TreeDEM

sig = sign(sk, serializeT2(msg2))
verify(pk, sig, serializeT2(msg2))

Same key

Different types

What if serializeT1(msg1) = serializeT2(msg2)?
First step for an attack:
TreeDEM signature on msg2 is a signature forgery on msg1 in TreeSync!

10

https://ia.cr/2022/1732


Signature ambiguity in MLS draft 12
(“TreeSync: . . . ”, USENIX Security ’23, https://ia.cr/2022/1732)

TreeSync

sig = sign(sk, serializeT1(msg1))
verify(pk, sig, serializeT1(msg1))

TreeDEM

sig = sign(sk, serializeT2(msg2))
verify(pk, sig, serializeT2(msg2))

Same key

Different types

What if serializeT1(msg1) = serializeT2(msg2)?
First step for an attack:
TreeDEM signature on msg2 is a signature forgery on msg1 in TreeSync!

10

https://ia.cr/2022/1732


Signature ambiguity in MLS draft 12
(“TreeSync: . . . ”, USENIX Security ’23, https://ia.cr/2022/1732)

TreeSync

sig = sign(sk, serializeT1(msg1))
verify(pk, sig, serializeT1(msg1))

TreeDEM

sig = sign(sk, serializeT2(msg2))
verify(pk, sig, serializeT2(msg2))

Same key

Different types

What if serializeT1(msg1) = serializeT2(msg2)?
First step for an attack:
TreeDEM signature on msg2 is a signature forgery on msg1 in TreeSync!

10

https://ia.cr/2022/1732


Two questions

From a protocol designer perspective:
▶ How did this attack survive 4 years and 12 drafts of the MLS standard,

although this is a classic issue known as “lack of domain-separation”?

Our answer:
▶ there is no rigorous definition for “domain-separation”
▶ it is hard to enforce in a large standard

From a protocol analyst perspective:
▶ Why was this attack not caught by previous pen & paper security proofs?

11



Two questions

From a protocol designer perspective:
▶ How did this attack survive 4 years and 12 drafts of the MLS standard,

although this is a classic issue known as “lack of domain-separation”?

Our answer:
▶ there is no rigorous definition for “domain-separation”
▶ it is hard to enforce in a large standard

From a protocol analyst perspective:
▶ Why was this attack not caught by previous pen & paper security proofs?

11



Why the attack was not caught by previous security proofs?

Mathematical model

Security properties

Security proof

In mathematical models of MLS: no precise message format

“ETK: External-Operations TreeKEM and the Security of MLS in RFC 9420”, C. Cremers, E. Günsay, V. Wesselkamp, M. Zhao

12



Why the attack was not caught by previous security proofs?

Mathematical model

Security properties

Security proof

In mathematical models of MLS: no precise message format

“ETK: External-Operations TreeKEM and the Security of MLS in RFC 9420”, C. Cremers, E. Günsay, V. Wesselkamp, M. Zhao

12



Why the attack was not caught by previous security proofs?

Mathematical model

Security properties

Security proof

In mathematical models of MLS: no precise message format

“ETK: External-Operations TreeKEM and the Security of MLS in RFC 9420”, C. Cremers, E. Günsay, V. Wesselkamp, M. Zhao

12



Why the attack was not caught by previous security proofs?

Mathematical model

Security properties

Security proof

In mathematical models of MLS: no precise message format

“ETK: External-Operations TreeKEM and the Security of MLS in RFC 9420”, C. Cremers, E. Günsay, V. Wesselkamp, M. Zhao

12



Why the attack was not caught by previous security proofs?

Mathematical model

Security properties

Security proof

In mathematical models of MLS: no precise message format

“ETK: External-Operations TreeKEM and the Security of MLS in RFC 9420”, C. Cremers, E. Günsay, V. Wesselkamp, M. Zhao

12



Lesson for protocol analysts:
reason on precise mathematical models

▶ catch subtle attacks
▶ bonus: also provide a reference implementation

Problem: reasoning on message formats makes proof more complex

Our solution:
▶ define a rigorous notion of “secure formats”
▶ secure formats can soundly be abstracted away
▶ make a tool to check if a format is secure (Comparse)

13



Lesson for protocol analysts:
reason on precise mathematical models

▶ catch subtle attacks
▶ bonus: also provide a reference implementation

Problem: reasoning on message formats makes proof more complex

Our solution:
▶ define a rigorous notion of “secure formats”
▶ secure formats can soundly be abstracted away
▶ make a tool to check if a format is secure (Comparse)

13



Lesson for protocol analysts:
reason on precise mathematical models

▶ catch subtle attacks
▶ bonus: also provide a reference implementation

Problem: reasoning on message formats makes proof more complex

Our solution:
▶ define a rigorous notion of “secure formats”
▶ secure formats can soundly be abstracted away
▶ make a tool to check if a format is secure (Comparse)

13



Security critical message formats

14



Security critical message formats
(“Comparse: . . . ”, ACM CCS 2023, https://ia.cr/2023/1390)

High-level
protocol data

Hash
HPKE
KDF
AEAD

Signature
MAC
. . .

Binary
data

(format)

Cryptographic assumptions
(from the literature)

Security properties actually used
(Pen & Paper, ProVerif, Tamarin, . . . )

Format properties
(Comparse)

15

https://ia.cr/2023/1390


Security critical message formats
(“Comparse: . . . ”, ACM CCS 2023, https://ia.cr/2023/1390)

High-level
protocol data

Hash
HPKE
KDF
AEAD

Signature
MAC
. . .

Binary
data

(format)

Cryptographic assumptions
(from the literature)

Security properties actually used
(Pen & Paper, ProVerif, Tamarin, . . . )

Format properties
(Comparse)

15

https://ia.cr/2023/1390


A rigorous approach toward domain separation
(“Comparse: . . . ”, ACM CCS 2023, https://ia.cr/2023/1390)

We build a systematic approach toward secure formats and “good domain-separation”.

For example, we define “good domain-separation” for signatures as:

▶ format must be injective (i.e. parseable)
▶ choose one format per signature key (across all versions and extensions of the protocol)
▶ format must not depend on external context

This is a sufficient and necessary condition to abstract formats away in signatures!

High-level

Bytes b

m1 m2

sign verify ✓

!△

TreeSync

Bytes

TreeDEM

b

m1

m2

sign

verify ✓

!△

16

https://ia.cr/2023/1390


A rigorous approach toward domain separation
(“Comparse: . . . ”, ACM CCS 2023, https://ia.cr/2023/1390)

We build a systematic approach toward secure formats and “good domain-separation”.

For example, we define “good domain-separation” for signatures as:
▶ format must be injective (i.e. parseable)

▶ choose one format per signature key (across all versions and extensions of the protocol)
▶ format must not depend on external context

This is a sufficient and necessary condition to abstract formats away in signatures!

High-level

Bytes b

m1 m2

sign verify ✓

!△

TreeSync

Bytes

TreeDEM

b

m1

m2

sign

verify ✓

!△

16

https://ia.cr/2023/1390


A rigorous approach toward domain separation
(“Comparse: . . . ”, ACM CCS 2023, https://ia.cr/2023/1390)

We build a systematic approach toward secure formats and “good domain-separation”.

For example, we define “good domain-separation” for signatures as:
▶ format must be injective (i.e. parseable)
▶ choose one format per signature key (across all versions and extensions of the protocol)
▶ format must not depend on external context

This is a sufficient and necessary condition to abstract formats away in signatures!

High-level

Bytes b

m1 m2

sign verify ✓

!△

TreeSync

Bytes

TreeDEM

b

m1

m2

sign

verify ✓

!△

16

https://ia.cr/2023/1390


A rigorous approach toward domain separation
(“Comparse: . . . ”, ACM CCS 2023, https://ia.cr/2023/1390)

We build a systematic approach toward secure formats and “good domain-separation”.

For example, we define “good domain-separation” for signatures as:
▶ format must be injective (i.e. parseable)
▶ choose one format per signature key (across all versions and extensions of the protocol)
▶ format must not depend on external context

This is a sufficient and necessary condition to abstract formats away in signatures!

High-level

Bytes b

m1 m2

sign verify ✓

!△

TreeSync

Bytes

TreeDEM

b

m1

m2

sign

verify ✓

!△

16

https://ia.cr/2023/1390


Good domain-separation in real-world protocols
Claim: in real-world protocols, data sent on the network have “good domain-separation”.

TLS 1.3 Handshake message, properly domain-separated across versions since 1996 (SSLv3)

17



Good domain-separation in real-world protocols
Claim: in real-world protocols, data sent on the network have “good domain-separation”.

TLS 1.3 Handshake message, properly domain-separated across versions since 1996 (SSLv3)

17



Ugly message formats in real-world protocols

In the same specification, TLS 1.3 Transcript hash

18



Lesson for protocol designers:
love all message formats equally

▶ rule out a whole class of attacks
▶ help protocol analysts willing to model them precisely

19



Symbolic security of MLS: TreeKEM

20



Proving security of TreeKEM
(“TreeKEM: . . . ”, to appear at IEEE S&P 2025, https://ia.cr/2025/410)

ha
sh

ha
sh

encrypt

encrypt

We prove a confidentiality theorem on TreeKEM.
Challenges:
▶ requires recursive data types
▶ inductive proofs
▶ an unbounded sequence of key derivations
▶ an unbounded sequence of public-key encryptions (and internally, KEMs)

DY∗ is a tool of choice for these challenges, still we had to heavily improve it.
21

https://ia.cr/2025/410


Lesson for protocol analysts:
novel protocols may require new tools

// TODO: insert “modern problems require modern solutions” meme

▶ can’t have “one tool to rule them all”
▶ similar to various pen & paper proof frameworks (game-hop, UC, SSP, . . . )

22



Conclusion

▶ we produced machine-checked security proofs for parts of MLS (TreeSync & TreeKEM)
▶ developed a methodology to reason on a precise model of cryptographic standards
▶ shed light on the importance of message formatting in cryptographic protocols
▶ and propose a rigorous approach to domain-separation
▶ we improved the tools to perform machine-checked symbolic security proofs

https://github.com/Inria-Prosecco/mls-star

https://ia.cr/2022/1732 (TreeSync)
https://ia.cr/2023/1390 (Comparse)
https://ia.cr/2025/410 (TreeKEM)

theophile.wallez@inria.fr
https://www.twal.org/
@twal.org

23

https://github.com/Inria-Prosecco/mls-star
https://ia.cr/2022/1732
https://ia.cr/2023/1390
https://ia.cr/2025/410
mailto:theophile.wallez@inria.fr
https://www.twal.org/
https://bsky.app/profile/twal.org


References

Théophile Wallez, Jonathan Protzenko, Benjamin Beurdouche, and Karthikeyan
Bhargavan.
TreeSync: Authenticated group management for messaging layer security.
In 32nd USENIX Security Symposium (USENIX Security 23), August 2023.

Théophile Wallez, Jonathan Protzenko, and Karthikeyan Bhargavan.
Comparse: Provably secure formats for cryptographic protocols.
In Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’23, November 2023.

Théophile Wallez, Jonathan Protzenko, and Karthikeyan Bhargavan.
TreeKEM: A modular machine-checked symbolic security analysis of group key agreement
in messaging layer security, 2025.
To appear at IEEE S&P 2025. https://eprint.iacr.org/2025/410.

24

https://eprint.iacr.org/2025/410

	Introduction
	Symbolic security analysis of MLS
	Security critical message formats
	Symbolic security of MLS: TreeKEM
	Conclusion

