
Comparse:
Provably Secure Formats

for Cryptographic Protocols

b

m1 m2
serialize serializ

e

sign verify ✓

!△

Théophile Wallez, Inria Paris
Jonathan Protzenko, Microsoft Research
Karthikeyan Bhargavan, Inria Paris, Cryspen

1

Message formats in cryptographic
protocols

2

Message formats in MLS: the genesis of Comparse

TreeSync: Authenticated Group Management for Messaging Layer Security
USENIX Security ’23

Developed Comparse to precisely study message formats in MLS. . .
. . . and found an interesting attack exploiting these.

3

Message formats in MLS: the genesis of Comparse

TreeSync: Authenticated Group Management for Messaging Layer Security
USENIX Security ’23

Developed Comparse to precisely study message formats in MLS. . .

. . . and found an interesting attack exploiting these.

3

Message formats in MLS: the genesis of Comparse

TreeSync: Authenticated Group Management for Messaging Layer Security
USENIX Security ’23

Developed Comparse to precisely study message formats in MLS. . .
. . . and found an interesting attack exploiting these.

3

Signature ambiguity in MLS draft 12

TreeSync

sig = sign(sk, serializeT1(msg1))

verify(pk, sig, serializeT1(msg1))

TreeDEM

sig = sign(sk, serializeT2(msg2))
verify(pk, sig, serializeT2(msg2))

Same key

Different types

What if ∃msg1msg2, serializeT1(msg1) = serializeT2(msg2)?

Possible attack:
TreeDEM signature could be used to forge a signature in TreeSync!

4

Signature ambiguity in MLS draft 12

TreeSync

sig = sign(sk, serializeT1(msg1))

verify(pk, sig, serializeT1(msg1))

TreeDEM

sig = sign(sk, serializeT2(msg2))
verify(pk, sig, serializeT2(msg2))

Same key

Different types

What if ∃msg1msg2, serializeT1(msg1) = serializeT2(msg2)?

Possible attack:
TreeDEM signature could be used to forge a signature in TreeSync!

4

Signature ambiguity in MLS draft 12

TreeSync

sig = sign(sk, serializeT1(msg1))
verify(pk, sig, serializeT1(msg1))

TreeDEM

sig = sign(sk, serializeT2(msg2))
verify(pk, sig, serializeT2(msg2))

Same key

Different types

What if ∃msg1msg2, serializeT1(msg1) = serializeT2(msg2)?

Possible attack:
TreeDEM signature could be used to forge a signature in TreeSync!

4

Signature ambiguity in MLS draft 12

TreeSync

sig = sign(sk, serializeT1(msg1))
verify(pk, sig, serializeT1(msg1))

TreeDEM

sig = sign(sk, serializeT2(msg2))
verify(pk, sig, serializeT2(msg2))

Same key

Different types

What if ∃msg1msg2, serializeT1(msg1) = serializeT2(msg2)?

Possible attack:
TreeDEM signature could be used to forge a signature in TreeSync!

4

Signature ambiguity in MLS draft 12

TreeSync

sig = sign(sk, serializeT1(msg1))
verify(pk, sig, serializeT1(msg1))

TreeDEM

sig = sign(sk, serializeT2(msg2))
verify(pk, sig, serializeT2(msg2))

Same key

Different types

What if ∃msg1msg2, serializeT1(msg1) = serializeT2(msg2)?

Possible attack:
TreeDEM signature could be used to forge a signature in TreeSync!

4

Signature ambiguity in MLS draft 12

TreeSync

sig = sign(sk, serializeT1(msg1))
verify(pk, sig, serializeT1(msg1))

TreeDEM

sig = sign(sk, serializeT2(msg2))
verify(pk, sig, serializeT2(msg2))

Same key

Different types

What if ∃msg1msg2, serializeT1(msg1) = serializeT2(msg2)?

Possible attack:
TreeDEM signature could be used to forge a signature in TreeSync!

4

Signature ambiguity in MLS draft 12

TreeSync

sig = sign(sk, serializeT1(msg1))
verify(pk, sig, serializeT1(msg1))

TreeDEM

sig = sign(sk, serializeT2(msg2))
verify(pk, sig, serializeT2(msg2))

Same key

Different types

What if ∃msg1msg2, serializeT1(msg1) = serializeT2(msg2)?

Possible attack:
TreeDEM signature could be used to forge a signature in TreeSync!

4

Signature ambiguity in MLS draft 12

TreeSync

sig = sign(sk, serializeT1(msg1))
verify(pk, sig, serializeT1(msg1))

TreeDEM

sig = sign(sk, serializeT2(msg2))
verify(pk, sig, serializeT2(msg2))

Same key

Different types

What if ∃msg1msg2, serializeT1(msg1) = serializeT2(msg2)?

Possible attack:
TreeDEM signature could be used to forge a signature in TreeSync!

4

Security critical formats are omnipresent

High-level
protocol data

Hash
HPKE
KDF
AEAD

Signature
MAC
. . .

Binary
data

(format)

Cryptographic assumptions
(from the literature)

Security properties we use
(ProVerif, Tamarin, pen & paper, . . .)

Format properties
(this work)

5

Security critical formats are omnipresent

High-level
protocol data

Hash
HPKE
KDF
AEAD

Signature
MAC
. . .

Binary
data

(format)

Cryptographic assumptions
(from the literature)

Security properties we use
(ProVerif, Tamarin, pen & paper, . . .)

Format properties
(this work)

5

Security critical formats are omnipresent

High-level
protocol data

Hash
HPKE
KDF
AEAD

Signature
MAC
. . .

Binary
data

(format)

Cryptographic assumptions
(from the literature)

Security properties we use
(ProVerif, Tamarin, pen & paper, . . .)

Format properties
(this work)

5

Security critical formats are omnipresent

High-level
protocol data

Hash
HPKE
KDF
AEAD

Signature
MAC
. . .

Binary
data

(format)

Cryptographic assumptions
(from the literature)

Security properties we use
(ProVerif, Tamarin, pen & paper, . . .)

Format properties
(this work)

5

Messages formats play a crucial role
in cryptographic protocols security.

We study their impact in two steps:
1. study properties of message formats
2. show how format properties compose with cryptographic

assumptions to obtain the security properties we use

Running example: signatures.

6

Message formats properties

High-level

Bytes

b

m1 m2

sign verify ✓

!△

Non-ambiguity

m

b1 b2

sign verify ✗

!△

Representation unicity

7

Message formats properties

High-level

Bytes b

m1 m2

sign verify ✓

!△

Non-ambiguity

m

b1 b2

sign verify ✗

!△

Representation unicity

7

Message formats properties

High-level

Bytes b

m1 m2

sign verify ✓

!△

Non-ambiguity

m

b1 b2

sign verify ✗

!△

Representation unicity

7

Message formats properties

High-level

Bytes b

m1 m2

sign verify ✓

!△

Non-ambiguity

m

b1 b2

sign verify ✗

!△

Representation unicity

7

Message formats properties

High-level

Bytes b

m1 m2

sign verify ✓

!△

Non-ambiguity

m

b1 b2

sign verify ✗

!△

Representation unicity

7

Message formats properties

High-level

Bytes b

m1 m2

sign verify ✓

!△

Non-ambiguity

m

b1 b2

sign verify ✗

!△

Representation unicity

7

Message formats properties

High-level

Bytes b

m1 m2

sign verify ✓

!△

Non-ambiguity

m

b1 b2

sign verify ✗

!△

Representation unicity

7

Message formats properties across protocols

TreeSync

Bytes b

m1 m2

TreeDEM m1 m2

sign

verify ✓

!△

The problem: the meaning of b depends on the sub-protocol.
One solution: add a tag in b to disambiguate the sub-protocol in use.
The result: the meaning of b becomes self-contained.

8

Message formats properties across protocols

TreeSync

Bytes b

m1 m2

TreeDEM m1 m2

sign

verify ✓

!△

The problem: the meaning of b depends on the sub-protocol.
One solution: add a tag in b to disambiguate the sub-protocol in use.
The result: the meaning of b becomes self-contained.

8

Message formats properties across protocols

TreeSync

Bytes b

m1 m2

TreeDEM m1 m2

sign

verify ✓

!△

The problem: the meaning of b depends on the sub-protocol.
One solution: add a tag in b to disambiguate the sub-protocol in use.
The result: the meaning of b becomes self-contained.

8

Message formats properties across protocols

TreeSync

Bytes b

m1 m2

TreeDEM m1 m2

sign

verify ✓

!△

The problem: the meaning of b depends on the sub-protocol.

One solution: add a tag in b to disambiguate the sub-protocol in use.
The result: the meaning of b becomes self-contained.

8

Message formats properties across protocols

TreeSync

Bytes b

m1 m2

TreeDEM m1 m2

sign

verify ✓

!△

The problem: the meaning of b depends on the sub-protocol.
One solution: add a tag in b to disambiguate the sub-protocol in use.

The result: the meaning of b becomes self-contained.

8

Message formats properties across protocols

TreeSync

Bytes b

m1 m2

TreeDEM m1 m2

sign

verify ✓

!△

The problem: the meaning of b depends on the sub-protocol.
One solution: add a tag in b to disambiguate the sub-protocol in use.
The result: the meaning of b becomes self-contained.

8

A rigorous approach to domain separation

Bytes High-level

sign
verify
EUF-CMA

sign
verify

Unforgeability

format

reduction ?

Design discipline: Each signature key is used with a single format, and

Reduction if: this format is self-contained and non-ambiguous.

Note 1: MLS draft 12 failed to obey this design discipline!
This weakness can be used in an attack.

Note 2: similar design discipline for MAC, AEAD, KDF, . . .

9

A rigorous approach to domain separation

Bytes High-level

sign
verify
EUF-CMA

sign
verify

Unforgeability

format

reduction ?

Design discipline: Each signature key is used with a single format, and

Reduction if: this format is self-contained and non-ambiguous.

Note 1: MLS draft 12 failed to obey this design discipline!
This weakness can be used in an attack.

Note 2: similar design discipline for MAC, AEAD, KDF, . . .

9

A rigorous approach to domain separation

Bytes High-level

sign
verify
EUF-CMA

sign
verify

Unforgeability

format

reduction ?

Design discipline: Each signature key is used with a single format, and

Reduction if: this format is self-contained and non-ambiguous.

Note 1: MLS draft 12 failed to obey this design discipline!
This weakness can be used in an attack.

Note 2: similar design discipline for MAC, AEAD, KDF, . . .

9

A rigorous approach to domain separation

Bytes High-level

sign
verify
EUF-CMA

sign
verify

Unforgeability

format

reduction ?

Design discipline: Each signature key is used with a single format, and

Reduction if: this format is self-contained and non-ambiguous.

Note 1: MLS draft 12 failed to obey this design discipline!
This weakness can be used in an attack.

Note 2: similar design discipline for MAC, AEAD, KDF, . . .

9

A rigorous approach to domain separation

Bytes High-level

sign
verify
EUF-CMA

sign
verify

Unforgeability

format

reduction ?

Design discipline: Each signature key is used with a single format, and
Reduction if: this format is self-contained and non-ambiguous.

Note 1: MLS draft 12 failed to obey this design discipline!
This weakness can be used in an attack.

Note 2: similar design discipline for MAC, AEAD, KDF, . . .

9

A rigorous approach to domain separation

Bytes High-level

sign
verify
EUF-CMA

sign
verify

Unforgeability

format

reduction ?

Design discipline: Each signature key is used with a single format, and
Reduction if: this format is self-contained and non-ambiguous.

Note 1: MLS draft 12 failed to obey this design discipline!
This weakness can be used in an attack.

Note 2: similar design discipline for MAC, AEAD, KDF, . . .

9

A rigorous approach to domain separation

Bytes High-level

sign
verify
EUF-CMA

sign
verify

Unforgeability

format

reduction ?

Design discipline: Each signature key is used with a single format, and
Reduction if: this format is self-contained and non-ambiguous.

Note 1: MLS draft 12 failed to obey this design discipline!
This weakness can be used in an attack.

Note 2: similar design discipline for MAC, AEAD, KDF, . . .
9

Analyzing message formats
in a given protocol

10

Comparse: a proof framework for message formats

We define:
▶ 4 safe message format combinators (e.g. pairs, lists),
▶ prove their security properties once and for all

(full details in the paper!)

To study a specific format, we can
▶ define it using the safe combinators,
▶ obtain its security properties (almost) for free!

Remaining problem: protocols define many formats, many checks to do :(

Solution: in a proof assistant,
▶ automate message format generation,
▶ prove security conditions automatically!

11

Comparse: a proof framework for message formats

We define:
▶ 4 safe message format combinators (e.g. pairs, lists),
▶ prove their security properties once and for all

(full details in the paper!)

To study a specific format, we can
▶ define it using the safe combinators,
▶ obtain its security properties (almost) for free!

Remaining problem: protocols define many formats, many checks to do :(

Solution: in a proof assistant,
▶ automate message format generation,
▶ prove security conditions automatically!

11

Comparse: a proof framework for message formats

We define:
▶ 4 safe message format combinators (e.g. pairs, lists),
▶ prove their security properties once and for all

(full details in the paper!)

To study a specific format, we can
▶ define it using the safe combinators,
▶ obtain its security properties (almost) for free!

Remaining problem: protocols define many formats, many checks to do :(

Solution: in a proof assistant,
▶ automate message format generation,
▶ prove security conditions automatically!

11

Comparse: a proof framework for message formats

We define:
▶ 4 safe message format combinators (e.g. pairs, lists),
▶ prove their security properties once and for all

(full details in the paper!)

To study a specific format, we can
▶ define it using the safe combinators,
▶ obtain its security properties (almost) for free!

Remaining problem: protocols define many formats, many checks to do :(

Solution: in a proof assistant,
▶ automate message format generation,
▶ prove security conditions automatically!

11

Defining formats with Comparse in F*

TLS 1.3 RFC

F*

struct {
ProtocolVersion legacy_version;
Random random;
opaque legacy_session_id<0..32>;

// ...

Extension extensions<8..2^16−1>;

} ClientHello;

type client_hello = {
legacy_version: protocol_version;
random: random;
legacy_session_id:

tls_bytes {min=0; max=32};

// ...

extensions:
tls_list extension
{min=8; max=(pow2 16)−1};

}

Call the Comparse meta-program:

%splice [mf_client_hello] (gen_format_for (‘%client_hello));

and prove automatically non-ambiguity and representation unicity.

We support several fallbacks if the meta-program fail.

12

Defining formats with Comparse in F*

TLS 1.3 RFC F*

struct {
ProtocolVersion legacy_version;
Random random;
opaque legacy_session_id<0..32>;

// ...

Extension extensions<8..2^16−1>;

} ClientHello;

type client_hello = {
legacy_version: protocol_version;
random: random;
legacy_session_id:

tls_bytes {min=0; max=32};

// ...

extensions:
tls_list extension
{min=8; max=(pow2 16)−1};

}

Call the Comparse meta-program:

%splice [mf_client_hello] (gen_format_for (‘%client_hello));

and prove automatically non-ambiguity and representation unicity.

We support several fallbacks if the meta-program fail.

12

Defining formats with Comparse in F*

TLS 1.3 RFC F*

struct {
ProtocolVersion legacy_version;
Random random;
opaque legacy_session_id<0..32>;

// ...

Extension extensions<8..2^16−1>;

} ClientHello;

type client_hello = {
legacy_version: protocol_version;
random: random;
legacy_session_id:

tls_bytes {min=0; max=32};

// ...

extensions:
tls_list extension
{min=8; max=(pow2 16)−1};

}

Call the Comparse meta-program:

%splice [mf_client_hello] (gen_format_for (‘%client_hello));

and prove automatically non-ambiguity and representation unicity.

We support several fallbacks if the meta-program fail.

12

Defining formats with Comparse in F*

TLS 1.3 RFC F*

struct {
ProtocolVersion legacy_version;
Random random;
opaque legacy_session_id<0..32>;

// ...

Extension extensions<8..2^16−1>;

} ClientHello;

type client_hello = {
legacy_version: protocol_version;
random: random;
legacy_session_id:

tls_bytes {min=0; max=32};

// ...

extensions:
tls_list extension
{min=8; max=(pow2 16)−1};

}

Call the Comparse meta-program:

%splice [mf_client_hello] (gen_format_for (‘%client_hello));

and prove automatically non-ambiguity and representation unicity.
We support several fallbacks if the meta-program fail.

12

Case study: cTLS
Use-case: using TLS 1.3 between IoT devices.

Problem: TLS 1.3 messages are big!

ProtocolVersion legacy_version;
Random random;
opaque legacy_session_id<0..32>;
uint16 cipher_suites_length;
CipherSuite cipher_suites[cipher_suites_length];
opaque legacy_compression_methods<1..28-1>;
uint16 extensions_length;
ExtensionType extension type = supported groups;
uint16 extension_length;
NamedGroup supported_groups[extension_length];
ExtensionType extension_type = key_share;
uint16 extension_length;
uint16 client_shares_length;
NamedGroup group = x25519;
uint16 key_size;
opaque key[key_size];
... (other extensions, omitted)

cTLS compression steps:

1. Trim legacy
2. Agree off-band on

ciphersuites
3. Trim redundant

length tags
4. . . .

13

Case study: cTLS
Use-case: using TLS 1.3 between IoT devices.
Problem: TLS 1.3 messages are big!

ProtocolVersion legacy_version;
Random random;
opaque legacy_session_id<0..32>;
uint16 cipher_suites_length;
CipherSuite cipher_suites[cipher_suites_length];
opaque legacy_compression_methods<1..28-1>;
uint16 extensions_length;
ExtensionType extension type = supported groups;
uint16 extension_length;
NamedGroup supported_groups[extension_length];
ExtensionType extension_type = key_share;
uint16 extension_length;
uint16 client_shares_length;
NamedGroup group = x25519;
uint16 key_size;
opaque key[key_size];
... (other extensions, omitted)

cTLS compression steps:

1. Trim legacy
2. Agree off-band on

ciphersuites
3. Trim redundant

length tags
4. . . .

13

Case study: cTLS
Use-case: using TLS 1.3 between IoT devices.
Problem: TLS 1.3 messages are big!

ProtocolVersion legacy_version;
Random random;
opaque legacy_session_id<0..32>;
uint16 cipher_suites_length;
CipherSuite cipher_suites[cipher_suites_length];
opaque legacy_compression_methods<1..28-1>;
uint16 extensions_length;
ExtensionType extension type = supported groups;
uint16 extension_length;
NamedGroup supported_groups[extension_length];
ExtensionType extension_type = key_share;
uint16 extension_length;
uint16 client_shares_length;
NamedGroup group = x25519;
uint16 key_size;
opaque key[key_size];
... (other extensions, omitted)

cTLS compression steps:

1. Trim legacy

2. Agree off-band on
ciphersuites

3. Trim redundant
length tags

4. . . .

13

Case study: cTLS
Use-case: using TLS 1.3 between IoT devices.
Problem: TLS 1.3 messages are big!

ProtocolVersion legacy_version;
Random random;
opaque legacy_session_id<0..32>;
uint16 cipher_suites_length;
CipherSuite cipher_suites[cipher_suites_length];
opaque legacy_compression_methods<1..28-1>;
uint16 extensions_length;
ExtensionType extension type = supported groups;
uint16 extension_length;
NamedGroup supported_groups[extension_length];
ExtensionType extension_type = key_share;
uint16 extension_length;
uint16 client_shares_length;
NamedGroup group = x25519;
uint16 key_size;
opaque key[key_size];
... (other extensions, omitted)

cTLS compression steps:

1. Trim legacy
2. Agree off-band on

ciphersuites

3. Trim redundant
length tags

4. . . .

13

Case study: cTLS
Use-case: using TLS 1.3 between IoT devices.
Problem: TLS 1.3 messages are big!

ProtocolVersion legacy_version;
Random random;
opaque legacy_session_id<0..32>;
uint16 cipher_suites_length;
CipherSuite cipher_suites[cipher_suites_length];
opaque legacy_compression_methods<1..28-1>;
uint16 extensions_length;
ExtensionType extension type = supported groups;
uint16 extension_length;
NamedGroup supported_groups[extension_length];
ExtensionType extension_type = key_share;
uint16 extension_length;
uint16 client_shares_length;
NamedGroup group = x25519;
uint16 key_size;
opaque key[key_size];
... (other extensions, omitted)

cTLS compression steps:

1. Trim legacy
2. Agree off-band on

ciphersuites
3. Trim redundant

length tags

4. . . .

13

Case study: cTLS
Use-case: using TLS 1.3 between IoT devices.
Problem: TLS 1.3 messages are big!

ProtocolVersion legacy_version;
Random random;
opaque legacy_session_id<0..32>;
uint16 cipher_suites_length;
CipherSuite cipher_suites[cipher_suites_length];
opaque legacy_compression_methods<1..28-1>;
uint16 extensions_length;
ExtensionType extension type = supported groups;
uint16 extension_length;
NamedGroup supported_groups[extension_length];
ExtensionType extension_type = key_share;
uint16 extension_length;
uint16 client_shares_length;
NamedGroup group = x25519;
uint16 key_size;
opaque key[key_size];
... (other extensions, omitted)

cTLS compression steps:

1. Trim legacy
2. Agree off-band on

ciphersuites
3. Trim redundant

length tags
4. . . .

13

Case study: cTLS format properties

cTLS modifies the message formatting of TLS 1.3.

Questions:
▶ is it still secure?
▶ can it be deployed in parallel to TLS 1.3?

Short answer:
▶ we proved that the formats still follow the protocol design disciplines

Long answer:
▶ §4 in the paper

14

Case study: cTLS format properties

cTLS modifies the message formatting of TLS 1.3.

Questions:
▶ is it still secure?
▶ can it be deployed in parallel to TLS 1.3?

Short answer:
▶ we proved that the formats still follow the protocol design disciplines

Long answer:
▶ §4 in the paper

14

Conclusion

Our contributions:
▶ shed light on the importance of formatting in cryptographic protocols
▶ show our approach on large case studies (TLS 1.3, MLS, cTLS)
▶ prove security of cTLS formats, pave the way to a full security proof
▶ theoretically integrates in proofs in the computational model
▶ concretely integrate with the DY* symbolic proof framework,

a core component of an MLS security proof

https://github.com/Inria-Prosecco/comparse-artifact
theophile.wallez@inria.fr
https://www.twal.org/
@twallez

15

https://github.com/Inria-Prosecco/comparse-artifact
mailto:theophile.wallez@inria.fr
https://www.twal.org/
https://twitter.com/twallez

Case studies

Protocol Nb. formats RFC LoC F∗ LoC Verif. time
TLS 1.3 51 311 452 3min15s
MLS 82 482 624 2min45s
cTLS 30 623 608 2min45s

16

	Message formats in cryptographic protocols
	Analyzing message formats in a given protocol

