
End-to-End Encrypted Group Chats with MLS:
Design, Implementation and Verification

TODO: insert here an easy to under-
stand yet impactful figure represent-
ing MLS (don’t forget to fill this in
before the final presentation!)

Théophile Wallez, Inria Paris
Jonathan Protzenko, Microsoft Research
Benjamin Beurdouche, Inria Paris, Mozilla
Karthikeyan Bhargavan, Inria Paris, Cryspen

1

Disclaimer

This talk is the long version of the USENIX Security ’23 talk:

TreeSync:
Authenticated Group Management for

Messaging Layer Security

https://www.usenix.org/conference/usenixsecurity23/presentation/wallez

Internet defense prize and distinguished paper award!

2

https://www.usenix.org/conference/usenixsecurity23/presentation/wallez

What is Messaging Layer Security
(MLS)

3

Secure group messaging

https://www.nytimes.com/2020/06/11/style/signal-messaging-app-encryption-protests.html

time

compromise

secure

Forward secrecy

compromise

healing secure

Post-compromise security

4

https://www.nytimes.com/2020/06/11/style/signal-messaging-app-encryption-protests.html

Secure group messaging

https://www.nytimes.com/2020/06/11/style/signal-messaging-app-encryption-protests.html

time

compromise

secure

Forward secrecy

compromise

healing secure

Post-compromise security

4

https://www.nytimes.com/2020/06/11/style/signal-messaging-app-encryption-protests.html

Secure group messaging

https://www.nytimes.com/2020/06/11/style/signal-messaging-app-encryption-protests.html

time

compromise

secure

Forward secrecy

compromise

healing secure

Post-compromise security

4

https://www.nytimes.com/2020/06/11/style/signal-messaging-app-encryption-protests.html

Secure group messaging

https://www.nytimes.com/2020/06/11/style/signal-messaging-app-encryption-protests.html

time

compromise

secure

Forward secrecy

compromise

healing secure

Post-compromise security

4

https://www.nytimes.com/2020/06/11/style/signal-messaging-app-encryption-protests.html

Secure group messaging

https://www.nytimes.com/2020/06/11/style/signal-messaging-app-encryption-protests.html

time

compromise

secure

Forward secrecy

compromise

healing secure

Post-compromise security

4

https://www.nytimes.com/2020/06/11/style/signal-messaging-app-encryption-protests.html

Secure group messaging

https://www.nytimes.com/2020/06/11/style/signal-messaging-app-encryption-protests.html

time

Eve joins

secure

Forward secrecy

Eve leaves

healing secure

Post-compromise security

4

https://www.nytimes.com/2020/06/11/style/signal-messaging-app-encryption-protests.html

State of the art, before MLS

N devices
O(N2) Signal channels!
Slow for large N, e.g. N ≃ 1000

RFC 9420

Design constraints:
Secure, efficient, asynchronous,

dynamic groups

5

State of the art, before MLS

N devices
O(N2) Signal channels!
Slow for large N, e.g. N ≃ 1000

RFC 9420

Design constraints:
Secure, efficient, asynchronous,

dynamic groups

5

State of the art, before MLS

N devices
O(N2) Signal channels!
Slow for large N, e.g. N ≃ 1000

RFC 9420

Design constraints:
Secure, efficient, asynchronous,

dynamic groups

5

State of the art, before MLS

N devices
O(N2) Signal channels!
Slow for large N, e.g. N ≃ 1000

RFC 9420

Design constraints:
Secure, efficient, asynchronous,

dynamic groups

5

A complex problem

https://nebuchadnezzar-megolm.github.io/

Many performance / security tradeoffs
(https://inria.hal.science/hal-02425229/)

Protocol Performance Security

6

https://nebuchadnezzar-megolm.github.io/
https://inria.hal.science/hal-02425229/

A complex problem
https://nebuchadnezzar-megolm.github.io/

Many performance / security tradeoffs
(https://inria.hal.science/hal-02425229/)

Protocol Performance Security

6

https://nebuchadnezzar-megolm.github.io/
https://inria.hal.science/hal-02425229/

A complex problem
https://nebuchadnezzar-megolm.github.io/

Many performance / security tradeoffs
(https://inria.hal.science/hal-02425229/)

Protocol Performance Security

6

https://nebuchadnezzar-megolm.github.io/
https://inria.hal.science/hal-02425229/

A complex RFC

7

Quick interlude: our contributions

8

Contributions TL;DR

9

Contributions TL;DR

9

Contributions TL;DR

9

Contributions TL;DR

9

Contribution: Methodology

F∗ specification

Functional
correctness

proofs
(e.g. invariants)

Symbolic
implementation

Security proofs
(for TreeSync)

DY
∗

Concrete
implementation

Interoperability
tests

(4 implementations)

HACL ∗

Fi
x

at
ta

ck
s

Fi
x

bu
gs

10

Contribution: Methodology

F∗ specification

Functional
correctness

proofs
(e.g. invariants)

Symbolic
implementation

Security proofs
(for TreeSync)

DY
∗

Concrete
implementation

Interoperability
tests

(4 implementations)

HACL ∗

Fi
x

at
ta

ck
s

Fi
x

bu
gs

10

Contribution: Methodology

F∗ specification

Functional
correctness

proofs
(e.g. invariants)

Symbolic
implementation

Security proofs
(for TreeSync)

DY
∗

Concrete
implementation

Interoperability
tests

(4 implementations)

HACL ∗

Fi
x

at
ta

ck
s

Fi
x

bu
gs

10

Contribution: Methodology

F∗ specification

Functional
correctness

proofs
(e.g. invariants)

Symbolic
implementation

Security proofs
(for TreeSync)

DY
∗

Concrete
implementation

Interoperability
tests

(4 implementations)

HACL ∗

Fi
x

at
ta

ck
s

Fi
x

bu
gs

10

Contribution: Methodology

F∗ specification

Functional
correctness

proofs
(e.g. invariants)

Symbolic
implementation

Security proofs
(for TreeSync)

DY
∗

Concrete
implementation

Interoperability
tests

(4 implementations)

HACL ∗

Fi
x

at
ta

ck
s

Fi
x

bu
gs

10

A tour of MLS

11

MLS decomposition

TreeSync: authenticated group synchronization
TreeKEM: efficient continuous group key establishment
TreeDEM: forward secure group messaging

12

Disclaimer

The following explanations do the following assumption:
▶ there are 2n participants in the group.

In particular, no dynamic groups (i.e. no add / remove).

Why:
▶ avoid consuming too much brainpower budget :)
▶ still give the core ideas behind MLS

13

TreeDEM

r

a0 b0 c0 d0

H a
(r
)

H
b
(r
) H

c (r)

H
d (r)

a1 b1 c1 d1

a2 b2 c2 d2

H
(a

0)
H
(a

1)

H
(b

0)
H
(b

1)

H
(c

0)
H
(c

1)

H
(d

0)
H
(d

1)

14

TreeDEM

r

a0 b0 c0 d0

H a
(r
)

H
b
(r
) H

c (r)

H
d (r)

a1 b1 c1 d1

a2 b2 c2 d2

H
(a

0)
H
(a

1)

H
(b

0)
H
(b

1)

H
(c

0)
H
(c

1)

H
(d

0)
H
(d

1)

14

TreeDEM

r

a0 b0 c0 d0

H a
(r
)

H
b
(r
) H

c (r)

H
d (r)

a1 b1 c1 d1

a2 b2 c2 d2

H
(a

0)
H
(a

1)

H
(b

0)
H
(b

1)

H
(c

0)
H
(c

1)

H
(d

0)
H
(d

1)

14

TreeDEM

r

a0 b0 c0 d0

H a
(r
)

H
b
(r
) H

c (r)

H
d (r)

a1 b1 c1 d1

a2 b2 c2 d2

H
(a

0)
H
(a

1)

H
(b

0)
H
(b

1)

H
(c

0)
H
(c

1)

H
(d

0)
H
(d

1)

14

TreeDEM

r

a0 b0 c0 d0

H a
(r
)

H
b
(r
) H

c (r)

H
d (r)

a1 b1 c1 d1

a2 b2 c2 d2

H
(a

0)
H
(a

1)

H
(b

0)
H
(b

1)

H
(c

0)
H
(c

1)

H
(d

0)
H
(d

1)

14

TreeDEM. . . with a tree
r

x y

a0 b0 c0 d0

H L
(r
) H

R (r)

H
L
(x
) H

R (x) H
L
(y
) H

R (y
)

Root key to participant key (worst case): O(log(n))

But:
Root key to all participant keys (worst case): O(n)

Hence:
Root key to participant key (amortized): O(1)

15

TreeDEM. . . with a tree
r

x y

a0 b0 c0 d0

H L
(r
) H

R (r)

H
L
(x
) H

R (x) H
L
(y
) H

R (y
)

Root key to participant key (worst case): O(log(n))

But:
Root key to all participant keys (worst case): O(n)

Hence:
Root key to participant key (amortized): O(1)

15

TreeDEM. . . with a tree
r

x y

a0 b0 c0 d0

H L
(r
) H

R (r)

H
L
(x
) H

R (x) H
L
(y
) H

R (y
)

Root key to participant key (worst case): O(log(n))

But:
Root key to all participant keys (worst case): O(n)

Hence:
Root key to participant key (amortized): O(1)

15

TreeDEM. . . with a tree
r

x y

a0 b0 c0 d0

H L
(r
) H

R (r)

H
L
(x
) H

R (x) H
L
(y
) H

R (y
)

Root key to participant key (worst case): O(log(n))

But:
Root key to all participant keys (worst case): O(n)

Hence:
Root key to participant key (amortized): O(1)

15

TreeDEM. . . with a tree
r

x y

a0 b0 c0 d0

H L
(r
) H

R (r)

H
L
(x
) H

R (x) H
L
(y
) H

R (y
)

Root key to participant key (worst case): O(log(n))

But:
Root key to all participant keys (worst case): O(n)

Hence:
Root key to participant key (amortized): O(1)

15

TreeDEM. . . with a tree
r

x y

a0 b0 c0 d0

H L
(r
) H

R (r)

H
L
(x
) H

R (x) H
L
(y
) H

R (y
)

Root key to participant key (worst case): O(log(n))

But:
Root key to all participant keys (worst case): O(n)

Hence:
Root key to participant key (amortized): O(1)

15

TreeKEM, the initial idea (ART)
Idea: do a tree of Diffie-Hellman.
Invariant: private key of a node known exactly by its subtree.

z = g xy

g z

x = g ab

g x

y = g cd

g y

a, g a b, gb c , g c d , gd

Send complexity: O(log(n)) asymetric operations
Receive complexity: O(log(n)) asymetric operations

16

TreeKEM, the initial idea (ART)
Idea: do a tree of Diffie-Hellman.
Invariant: private key of a node known exactly by its subtree.

z ′ = g xy ′

g z′

x = g ab

g x

y ′ = g c′d

g y ′

a, g a b, gb c ′, g c′ d , gd

Send complexity: O(log(n)) asymetric operations
Receive complexity: O(log(n)) asymetric operations

16

TreeKEM, the initial idea (ART)
Idea: do a tree of Diffie-Hellman.
Invariant: private key of a node known exactly by its subtree.

z ′ = g xy ′

g z′

x = g ab

g x

y ′ = g c′d

g y ′

a, g a b, gb c ′, g c′ d , gd

Send complexity: O(log(n)) asymetric operations
Receive complexity: O(log(n)) asymetric operations

16

TreeKEM, toward the final design
Idea: rely on asymetric encryption (HPKE) and hashes (HKDF).
Invariant: private key of a node known exactly by its subtree.
Three steps: generate, encrypt, publish.

pkx
skx

pka
ska

pkb
skb

pkd
skd

pkz
skz

pkz
skz

pky

sky

pkc
skc

Send complexity: O(log(n)) asymetric operations
Receive complexity: only 1 asymetric operation!

17

TreeKEM, toward the final design
Idea: rely on asymetric encryption (HPKE) and hashes (HKDF).
Invariant: private key of a node known exactly by its subtree.
Three steps: generate, encrypt, publish.

pkx
skx

pka
ska

pkb
skb

pkd
skd

pkz
skz
p2

p1

p0

ha
sh

hash

Send complexity: O(log(n)) asymetric operations
Receive complexity: only 1 asymetric operation!

17

TreeKEM, toward the final design
Idea: rely on asymetric encryption (HPKE) and hashes (HKDF).
Invariant: private key of a node known exactly by its subtree.
Three steps: generate, encrypt, publish.

pkx
skx

pka
ska

pkb
skb

pkd
skd

pkz
skz
p2

p1

p0

ha
sh

hash

encrypt

en
cry

pt

Send complexity: O(log(n)) asymetric operations
Receive complexity: only 1 asymetric operation!

17

TreeKEM, toward the final design
Idea: rely on asymetric encryption (HPKE) and hashes (HKDF).
Invariant: private key of a node known exactly by its subtree.
Three steps: generate, encrypt, publish.

pkx
skx

pka
ska

pkb
skb

pkd
skd

pkz
skz

pkz′

skz′

pky ′

sky ′

pkc′

skc′

Send complexity: O(log(n)) asymetric operations
Receive complexity: only 1 asymetric operation!

17

TreeKEM, toward the final design
Idea: rely on asymetric encryption (HPKE) and hashes (HKDF).
Invariant: private key of a node known exactly by its subtree.
Three steps: generate, encrypt, publish.

pkx
skx

pka
ska

pkb
skb

pkd
skd

pkz
skz

pkz′

skz′

pky ′

sky ′

pkc′

skc′

Send complexity: O(log(n)) asymetric operations
Receive complexity: only 1 asymetric operation!

17

TreeSync: why?

Alice joins a secure group, and receive a tree of public keys.
How does she makes sure those keys are not attacker-controlled?

How does she makes sure who is in the group?
Can the attacker be in the group without her knowledge?
Is Bob really Bob, or is it the attacker somehow?

TreeSync solves these problems by authenticating TreeKEM’s state.
In particular:
▶ authenticates all public keys, along with their recipients
▶ authenticates the roster, ensuring group membership agreement

Before the integration of TreeSync in MLS,
several man-in-the-middle-like attacks were found in MLS.
With TreeSync, this class of attacks are not possible anymore.

18

TreeSync: why?

Alice joins a secure group, and receive a tree of public keys.
How does she makes sure those keys are not attacker-controlled?

How does she makes sure who is in the group?
Can the attacker be in the group without her knowledge?
Is Bob really Bob, or is it the attacker somehow?

TreeSync solves these problems by authenticating TreeKEM’s state.
In particular:
▶ authenticates all public keys, along with their recipients
▶ authenticates the roster, ensuring group membership agreement

Before the integration of TreeSync in MLS,
several man-in-the-middle-like attacks were found in MLS.
With TreeSync, this class of attacks are not possible anymore.

18

TreeSync: why?

Alice joins a secure group, and receive a tree of public keys.
How does she makes sure those keys are not attacker-controlled?

How does she makes sure who is in the group?
Can the attacker be in the group without her knowledge?
Is Bob really Bob, or is it the attacker somehow?

TreeSync solves these problems by authenticating TreeKEM’s state.
In particular:
▶ authenticates all public keys, along with their recipients
▶ authenticates the roster, ensuring group membership agreement

Before the integration of TreeSync in MLS,
several man-in-the-middle-like attacks were found in MLS.
With TreeSync, this class of attacks are not possible anymore.

18

TreeSync: (naive) attempt 1

When a participant update keys, it signs the new tree.
Tz =

pkx

pka pkb pkd

sign(Tz)

pkz

pky

pkc

Tx =

Now, Alice’s signature is unintelligible!
As a result, Tx not authenticated by Alice anymore.

19

TreeSync: (naive) attempt 1

When a participant update keys, it signs the new tree.
Tz′ =

pkx

pka pkb pkd

sign(Tz)

pkz′

pky ′

pkc′

sign(Tz′)

Tx =

Now, Alice’s signature is unintelligible!
As a result, Tx not authenticated by Alice anymore.

19

TreeSync: (naive) attempt 1

When a participant update keys, it signs the new tree.
Tz′ =

pkx

pka pkb pkd

sign(Tz)

pkz′

pky ′

pkc′

sign(Tz′)

Tx =

Now, Alice’s signature is unintelligible!
As a result, Tx not authenticated by Alice anymore.

19

TreeSync: attempt 2
When a participant update keys, it signs the every modified subtree.

pkx

pka pkb pkd

sign(Ta)
sign(Tx)
sign(Tz)

pkz

pky

pkc

Invariant: every subtree is signed by one of the leaves under it.
Complexity: requires log(n) signatures in each leaf :(

20

TreeSync: attempt 2
When a participant update keys, it signs the every modified subtree.

pkx

pka pkb pkd

sign(Ta)
sign(Tx)
sign(Tz)

pkz′

pky ′

pkc′

sign(Tc′)
sign(Ty ′)
sign(Tz′)

Invariant: every subtree is signed by one of the leaves under it.
Complexity: requires log(n) signatures in each leaf :(

20

TreeSync: attempt 2
When a participant update keys, it signs the every modified subtree.

pkx

pka pkb pkd

sign(Ta)
sign(Tx)
sign(Tz)

pkz′

pky ′

pkc′

sign(Tc′)
sign(Ty ′)
sign(Tz′)

Invariant: every subtree is signed by one of the leaves under it.
Complexity: requires log(n) signatures in each leaf :(

20

TreeSync: final attempt

pkx
phx

pka
pha

pkb
phb

pkd
phd

sign(pka, pha)
pha = hash(pkx , phx ,TB)
phx = hash(pkz , phz ,TY)

pkz
phz

pky
phy

pkc
phc

sign(pkc′ , phc′)
phc′ = hash(pky ′ , phy ′ ,TD)
phy ′ = hash(pkz′ , phz′ ,TX)

Invariant: every subtree is linked by parent-hash to one of its leaves.
Complexity: requires only 1 signature in each leaf!

21

TreeSync: final attempt

pkx
phx

pka
pha

pkb
phb

pkd
phd

sign(pka, pha)
pha = hash(pkx , phx ,TB)
phx = hash(pkz , phz ,TY)

pkz
phz

pky
phy

pkc
phc

sign(pkc′ , phc′)
phc′ = hash(pky ′ , phy ′ ,TD)
phy ′ = hash(pkz′ , phz′ ,TX)

Invariant: every subtree is linked by parent-hash to one of its leaves.
Complexity: requires only 1 signature in each leaf!

21

TreeSync: final attempt

pkx
phx

pka
pha

pkb
phb

pkd
phd

sign(pka, pha)
pha = hash(pkx , phx ,TB)
phx = hash(pkz , phz ,TY)

pkz
phz

pky
phy

pkc
phc

sign(pkc′ , phc′)
phc′ = hash(pky ′ , phy ′ ,TD)
phy ′ = hash(pkz′ , phz′ ,TX)

Invariant: every subtree is linked by parent-hash to one of its leaves.
Complexity: requires only 1 signature in each leaf!

21

TreeSync: final attempt

pkx
phx

pka
pha

pkb
phb

pkd
phd

sign(pka, pha)
pha = hash(pkx , phx ,TB)
phx = hash(pkz , phz ,TY)

pkz′
phz′

pky ′

phy ′

pkc′
phc′

sign(pkc′ , phc′)
phc′ = hash(pky ′ , phy ′ ,TD)
phy ′ = hash(pkz′ , phz′ ,TX)

Invariant: every subtree is linked by parent-hash to one of its leaves.
Complexity: requires only 1 signature in each leaf!

21

2n participants: what did we miss?

Blank leaves: for non-power-of-two number of participants

Blank nodes: remove participants and erase secrets they know

Unmerged leaves: add new participants efficiently

Filtered nodes: optimize away nodes that are redundant

22

Contributions on TreeSync

23

Contribution: Modularizing MLS

TreeSync: authenticated group synchronization
TreeKEM: efficient continuous group key establishment
TreeDEM: forward secure group messaging

24

Contribution: Modularizing MLS

TreeSync: authenticated group synchronization
TreeKEM: efficient continuous group key establishment
TreeDEM: forward secure group messaging

24

Contribution: Modularizing MLS

TreeSync: authenticated group synchronization
TreeKEM: efficient continuous group key establishment
TreeDEM: forward secure group messaging

24

Contribution: Fixing TreeSync’s invariants

def join_group(group):
if well_formed(group):

...
else:

raise MalformedGroupException

Desirable property: well_formed is an invariant under group modifications.

Actually, a well-formed group could become malformed!

25

Contribution: Fixing TreeSync’s invariants

def join_group(group):
if well_formed(group):

...
else:

raise MalformedGroupException

Desirable property: well_formed is an invariant under group modifications.

Actually, a well-formed group could become malformed!

25

Contribution: Fixing TreeSync’s invariants

def join_group(group):
if well_formed(group):

...
else:

raise MalformedGroupException

Desirable property: well_formed is an invariant under group modifications.

Actually, a well-formed group could become malformed!

25

Contribution: Fixing TreeSync’s guarantees

Problem 1: Guarantees described in imprecise prose.

Problem 2: Guarantees not actually met by parent hash!

26

Contribution: Fixing TreeSync’s guarantees

Problem 1: Guarantees described in imprecise prose.

Problem 2: Guarantees not actually met by parent hash!

26

Contribution: Fixing TreeSync’s guarantees

Problem 1: Guarantees described in imprecise prose.

Problem 2: Guarantees not actually met by parent hash!

26

Contribution: Fixing TreeSync’s guarantees

Problem 1: Guarantees described in imprecise prose.

Problem 2: Guarantees not actually met by parent hash!

26

Contribution: Fixing a signature ambiguity attack

TreeSync TreeDEM

sig = sign(sk, serializeT1(msg1))
verify(pk, sig, serializeT1(msg1))

sig = sign(sk, serializeT2(msg2))
verify(pk, sig, serializeT2(msg2))

Same key

Different types

What if ∃msg1msg2, serializeT1(msg1) = serializeT2(msg2)?
Bad interaction between TreeSync and TreeDEM!

Attack found by doing proofs on a bit-precise specification,
thanks to executability and interoperability tests.

27

Contribution: Fixing a signature ambiguity attack

TreeSync TreeDEM

sig = sign(sk, serializeT1(msg1))
verify(pk, sig, serializeT1(msg1))

sig = sign(sk, serializeT2(msg2))
verify(pk, sig, serializeT2(msg2))

Same key

Different types

What if ∃msg1msg2, serializeT1(msg1) = serializeT2(msg2)?
Bad interaction between TreeSync and TreeDEM!

Attack found by doing proofs on a bit-precise specification,
thanks to executability and interoperability tests.

27

Contribution: Fixing a signature ambiguity attack

TreeSync TreeDEM

sig = sign(sk, serializeT1(msg1))
verify(pk, sig, serializeT1(msg1))

sig = sign(sk, serializeT2(msg2))
verify(pk, sig, serializeT2(msg2))

Same key

Different types

What if ∃msg1msg2, serializeT1(msg1) = serializeT2(msg2)?
Bad interaction between TreeSync and TreeDEM!

Attack found by doing proofs on a bit-precise specification,
thanks to executability and interoperability tests.

27

Contribution: Fixing a signature ambiguity attack

TreeSync TreeDEM

sig = sign(sk, serializeT1(msg1))
verify(pk, sig, serializeT1(msg1))

sig = sign(sk, serializeT2(msg2))
verify(pk, sig, serializeT2(msg2))

Same key

Different types

What if ∃msg1msg2, serializeT1(msg1) = serializeT2(msg2)?

Bad interaction between TreeSync and TreeDEM!

Attack found by doing proofs on a bit-precise specification,
thanks to executability and interoperability tests.

27

Contribution: Fixing a signature ambiguity attack

TreeSync TreeDEM

sig = sign(sk, serializeT1(msg1))
verify(pk, sig, serializeT1(msg1))

sig = sign(sk, serializeT2(msg2))
verify(pk, sig, serializeT2(msg2))

Same key

Different types

What if ∃msg1msg2, serializeT1(msg1) = serializeT2(msg2)?
Bad interaction between TreeSync and TreeDEM!

Attack found by doing proofs on a bit-precise specification,
thanks to executability and interoperability tests.

27

Contribution: Fixing a signature ambiguity attack

TreeSync TreeDEM

sig = sign(sk, serializeT1(msg1))
verify(pk, sig, serializeT1(msg1))

sig = sign(sk, serializeT2(msg2))
verify(pk, sig, serializeT2(msg2))

Same key

Different types

What if ∃msg1msg2, serializeT1(msg1) = serializeT2(msg2)?
Bad interaction between TreeSync and TreeDEM!

Attack found by doing proofs on a bit-precise specification,
thanks to executability and interoperability tests.

27

Contribution: Fixing a signature ambiguity attack

TreeSync TreeDEM

sig = sign(sk, serializeT1(msg1))
verify(pk, sig, serializeT1(msg1))

sig = sign(sk, serializeT2(msg2))
verify(pk, sig, serializeT2(msg2))

Same key

Different types

What if ∃msg1msg2, serializeT1(msg1) = serializeT2(msg2)?
Bad interaction between TreeSync and TreeDEM!

Attack found by doing proofs on a bit-precise specification,
thanks to executability and interoperability tests.

27

Proof sketch of TreeSync

28

Security proof, step 1: invariants

We prove many invariants on TreeSync (the well-formedness checks):

▶ Leaf signatures are valid
▶ Every node is linked by parent-hash to a node under it
▶ Things with unmerged leaves

29

Security proof, step 2: the parent-hash guarantee theorem

We define an equivalence relation on trees ≃.

We prove the theorem:

C1 C2

P1 P2

≃

≃

30

Security proof, step 2: the parent-hash guarantee theorem

We define an equivalence relation on trees ≃.

We prove the theorem:

C1 C2

P1 P2

≃

≃

30

Security proof, step 3: signature invariant

We want to prove : every subtree is authenticated by one of its leaves.

Proof sketch:

T1

T2

...

Tn

T ′
1

T ′
2

...

T ′
n

≃

≃

≃

31

Security proof, step 3: signature invariant

We want to prove : every subtree is authenticated by one of its leaves.

Proof sketch:

T1

T2

...

Tn

T ′
1

T ′
2

...

T ′
n

≃

≃

≃

31

Security proof, step 3: signature invariant

We want to prove : every subtree is authenticated by one of its leaves.

Proof sketch:

T1

T2

...

Tn

T ′
1

T ′
2

...

T ′
n

≃

≃

≃

31

Security proof, step 3: signature invariant

We want to prove : every subtree is authenticated by one of its leaves.

Proof sketch:

T1

T2

...

Tn

T ′
1

T ′
2

...

T ′
n

≃

≃

≃

31

Final notes

32

Proof effort
Component F∗ LoC Verification time
Library code 836 1min30s
TreeSync 1274 4min30s
TreeKEM 396 1min
TreeDEM 1384 2min45s
High level API 1024 1min30s
Library proofs 1170 1min45s
TreeSync proofs 4018 13min30s
Tests 2782 2min45s
Total specification 4914 11min15s
Total proofs 5188 15min15s

Roughly two man-years of work, because many by-products to work on:
▶ Develop the methodology to treat such large protocols
▶ How to obtain a bit-precise specification
▶ Developed a framework for verified message formatting,

both concrete and symbolic (in submission at CCS!)
▶ A protocol during its standardization is a moving target

33

Conclusion
Our contributions:
▶ formally specify MLS decomposed into three sub-protocols:

TreeSync, TreeKEM, and TreeDEM
▶ prove the security of TreeSync in the Dolev-Yao model
▶ do proofs on an executable, interoperable specification
▶ found design flaws and submitted fixes to the MLS Working Group

Future work: security proofs for TreeKEM and TreeDEM ; prove efficient
implementations.

The MLS Working Group gladly welcomed these contributions, resulting
in a fruitful collaboration.

https://github.com/Inria-Prosecco/treesync
theophile.wallez@inria.fr
https://www.twal.org/
@twallez

34

https://github.com/Inria-Prosecco/treesync
mailto:theophile.wallez@inria.fr
https://www.twal.org/
https://twitter.com/twallez

	What is Messaging Layer Security (MLS)
	Quick interlude: our contributions
	A tour of MLS
	Contributions on TreeSync
	Proof sketch of TreeSync
	Final notes

