TreeSync:

Authenticated Group Management for
Messaging Layer Security

TODO: insert here an easy to under-

stand yet impactful figure represent-
ing MLS (don't forget to fill this in

before the final presentation!)

Théophile Wallez, Inria Paris
Jonathan Protzenko, Microsoft Research

Benjamin Beurdouche, Inria Paris, Mozilla =
Karthikeyan Bhargavan, Inria Paris, Cryspen @

What is Messaging Layer Security
(MLS)

Secure group messaging

https://www.nytimes.com/2020/06/11/style/signal-messaging-app-encryption-protests.html

Secure group messaging
https://www.nytimes.com/2020/06/11/style/signal-messaging- app- encryption-protests.html
&he New Jork Times

Signal Downloads Are Way Up Since
the Protests Began

Organizers and demonstrators say they feel safer communicating
with end-to-end encryption.

https://www.nytimes.com/2020/06/11/style/signal-messaging-app-encryption-protests.html

Secure group messaging
https://www.nytimes.com/2020/06/11/style/signal-messaging- app- encryption-protests.html
&he New Jork Times

Signal Downloads Are Way Up Since
the Protests Began

Organizers and demonstrators say they feel safer communicating
with end-to-end encryption.

time

https://www.nytimes.com/2020/06/11/style/signal-messaging-app-encryption-protests.html

Secure group messaging

https://www.nytimes.com/2020/06/11/style/signal-messaging- app- encryption-protests.html

&he New Jork Times

Signal Downloads Are Way Up Since
the Protests Began

Organizers and demonstrators say they feel safer communicating
with end-to-end encryption.

|
Forward secrecy !

|
|
|
|
secure }
|
|

/_/H

[

compromise

time

https://www.nytimes.com/2020/06/11/style/signal-messaging-app-encryption-protests.html

Secure group messaging

https://www.nytimes.com/2020/06/11/style/signal-messaging- app- encryption-protests.html

&he New Jork Times

Signal Downloads Are Way Up Since
the Protests Began

Organizers and demonstrators say they feel safer communicating
with end-to-end encryption.

|
Forward secrecy !

|
|
|
|
secure }
|
|

/_/H

T T time

compromise compromise

https://www.nytimes.com/2020/06/11/style/signal-messaging-app-encryption-protests.html

Secure group messaging

https://www.nytimes.com/2020/06/11/style/signal-messaging- app- encryption-protests.html

€he New Hork Times

Signal Downloads Are Way Up Since
the Protests Began

Organizers and demonstrators say they feel safer communicating
with end-to-end encryption.

|
Forward secrecy ! Post-compromise security

healing secure

_____________ ’ L i

T T time

Eve joins Eve leaves

|

|

|

| |

| |

| |

| |

secure } }
| |

| |

/_/H

https://www.nytimes.com/2020/06/11/style/signal-messaging-app-encryption-protests.html

State of the art, before MLS

State of the art, before MLS

State of the art, before MLS

%
gy
N devices

O(N?) Signal channels!
Slow for large N, e.g. N ~ 1000

State of the art, before MLS

Q000+

1 ET F

l

0
.5 % MLS
.0
g RFC 9420
N devices

O(N?) Signal channels!
Slow for large N, e.g. N ~ 1000

Design constraints:
Secure, efficient, asynchronous,
dynamic groups

A complex problem

https://nebuchadnezzar-megolm.github.io/
https://inria.hal.science/hal-02425229/

A complex problem

https://nebuchadnezzar-megolm.github.io/

[matrix] =

Upgrade now to address E2EE vulnerabilities
in matrix-js-sdk, matrix-ios-sdk and matrix-
android-sdk2

28.09.2022 17:41 — Security — Matthew Hodgson, Denis Kasak, Matrix Cryptography Team, Matrix Security Team

https://nebuchadnezzar-megolm.github.io/
https://inria.hal.science/hal-02425229/

A complex problem

https://nebuchadnezzar-megolm.github.io/

[matrix]

Upgrade now to address E2EE vulnerabilities
in matrix-js-sdk, matrix-ios-sdk and matrix-
android-sdk2

28.09.2022 17:41 — Security — Matthew Hodgson, Denis Kasak, Matrix Cryptography Team, Matrix Security Team

Many performance / security tradeoffs
(https://inria.hal.science/hal-02425229/)

‘ Protocol Create Add Remove Update Group | Update | Remove

end | Recv | Send | Reev | New Send Recv end Recv | Agreement | PPCS | PACS
Sender Keys [18] | N N 1 1 N - - - B No No No
Chained mKEMT | N 1 1 1 1 N 1 N 1 Yes Yes Yes
2-KEM Trees ™ N | log®) | log®) | log®N) | log®N) | _log®) | log®™) | log®™) | log(\) Yes Yes No
ART [7] N[log(N) | Tog®™) | log(™) | Tog(N) - - Tlog(N) | log(™) Yes Yes No
TreeKEM T N[log(™N) | log™) 1 1 Tog(N) 1 Tog(N) 1 Yes Yes No
TreeKEMp * N 1 1 1 1 log(N)..N 1 TogN)..N 1 Yes Yes No~
TreeKEMp.s * N [1 1 N | log™)..N 1 Tog(N). .N 1 Yes Yes Yes

A /
~—— " "

Protocol Performance Security

https://nebuchadnezzar-megolm.github.io/
https://inria.hal.science/hal-02425229/

A complex RFC

Table of Contents

1. Introduction
er
Presentation Language
1.1. Optional Value
2.1.2. - gth Headers
rotocol Overview
Cryptographic State and Evolution
Example Protocol Execution
xternal Joins
elationships between Epochs
et Tree Concepts
atchet Tree Terminology
Ratchet Tree Nodes
MM
4.2. Views of a Ratchet Tre
Cryptographic Objects

Expiry and Revocation
Uniquely Tdentifying Clients
i

n
Encoding_and Decoding a Public Message
Encoding_and Decoding a Private Message

5.3.1. Content Encryption

5.3.2. Sender Data Encryption
atchet Tree Ope n

. Parent Node Contents

eaf Node Contents

eaf Node Validation

atchet Tree Evolution

Views of the Tree

aths
‘Adding oo Removing_Leaves

Tent Hashes
Using Parent Hashes
Verifying_Parent Hashes
chedule
Group Context
Tanscript Hash
xternal Initialization
re-Shared Keys
Exporters
esumption PSK
och Authenticators

ges
Keypackage Validation
11. Group Creation
11.1. Required Capab:
11.2. Reinitialization
11.3. Subgroup Branching

12. Group Evolution
12.1. Proposals
Add
pdate
enove

eInit
Externallnit
GroupContextExtensions

Proposal List Validation
pplying a Proposal List
Cor

m
Creating a Ccmmil
Processing a Commi

1 Adding oozt the Group

1, Extensibility

Additional Cipher Suites

Proposals

Credential Extensibility

Extensions

135
147 Sequencing of State Changes
15. Application Messages

9
estrictions
layed and R

rdered Application Messages

curity Considerati
. Tansport Security
onfidentiality of Group Secrets
onfidentiality of Sender Data
onfidentiality of Group Metadat:

GrowplD. Epoch, and Hessage requency

orward Secrecy and Post-Compromise Security
niqueness of Ratchet Tree Key Pairs
eyPackage Reuse

promise

uthentication Service Compromise

dditional Policy Enforcement

Toup Fragmentation by Malicious Insiders
ideration:

BNl

ipher Suites
ire Formats
xtension Types
roposal Types
Tedential Types
ignature Labels
11 Encryption Labels
. Exporter Labels
. pert _Pool
10. The "message/mis" Media Type

. nces
18.1. Normative References

18.2. Informative References

Protocol Origins of Example Trees
Evolution of Parent Hashes
Array-Based Trees

Link-Based Trees

Aithors” Addresses

[Page 164]

) 1,233 commits

19 00pen 582 Closed

Our contributions

Contributions TL:DR

Contributions TL:DR

Contributions TL:DR

Contribution: Modularizing MLS

TreeSync: authenticated group synchronization
TreeKEM: efficient continuous group key establishment
TreeDEM: forward secure group messaging

Contribution: Modularizing MLS

TreeSync: authenticated group synchronization
TreeKEM: efficient continuous group key establishment
TreeDEM: forward secure group messaging

Contribution: Modularizing MLS

CORRECTED

XS

TreeSync: authenticated group synchronization
TreeKEM: efficient continuous group key establishment
TreeDEM: forward secure group messaging

Contribution: Formal proof of TreeSync

L MLS

l

F* specification

10

Contribution: Formal proof of TreeSync

L MLS

L 4

F* specification

¥
Functional
correctness
proofs
(e.g. invariants)

10

Contribution: Formal proof of TreeSync

L MLS

>
Symbolic
implementation

|

Security proofs
(for TreeSync)

L 4

F* specification

¥
Functional
correctness
proofs
(e.g. invariants)

10

Contribution: Formal proof of TreeSync

L MLS

L 4

F* specification

Symbolic Concrete

L 4

implementation Functional implementation

correctness
proofs

. e.g. invariants ..
Security proofs (e.6- invariants) Interoperability
(for TreeSync) tests

(4 implementations)

10

Contribution: Formal proof of TreeSync

eemer L MILS

’
S
A
>
X
<! .
l" 0\(
1
Symbolic

implementation

A}
A
AY

Security proofs
(for TreeSync)

R
A Y
A Y
A Y
¥ ()
A}
. i’- . ‘?2
F* specifications 3 4
N .
' X
JiC
J ! Concrete
Functional implementation
correctness
proofs

Interoperability
tests
(4 implementations)

(e.g. invariants)

10

Contribution: Formal proof of TreeSync

eemer L MILS

’f
R R
A}
(\}_?c .
> .
L [y
X4 A LR
&, = o tions =
~N 1
44', " specimication® o
1)
2 y 1
e
1
Symbolic 4 !
Functional

implementation

Security proofs
(for TreeSync)

correctness
proofs

-y
- -

(e.g. invariants)

/

A/"Q *

Concrete
implementation

l

Interoperability
tests
(4 implementations)

10

Contribution: Fixing TreeSync's invariants

def join _group(group):
if well _formed(group):
else:
raise MalformedGroupException

Desirable property: well formed is an invariant under group modifications.

11

Contribution: Fixing TreeSync's invariants

def join _group(group):
if well _formed(group):
else:
raise MalformedGroupException

Desirable property: well formed is an invariant under group modifications.

Actually, a well-formed group could become malformed!

11

Contribution: Fixing TreeSync's invariants

def join _group(group):
if well _formed(group):
else:
raise MalformedGroupException

Desirable property: well formed is an invariant under group modifications.

Actually, a well-formed group could become malformed!

CORRECTED

A2

11

Contribution: Fixing TreeSync's guarantees

7.9. Parent Hashes

parent hashes|capture information about how keys in the tree were
populated.

it computes and signs a|parent hash|that summarizes the

state of the tree after the UpdatePath has been applied.

As a result, [the signature over the parent hash|in each member's leaf
effectively signs the subtree of the tree that hasn't been changed

since that leaf was last changed in an UpdatePath.

12

Contribution: Fixing TreeSync's guarantees

7.9. Parent Hashes

parent hashes|capture information about how keys in the tree were
populated.

it computes and signs a|parent hash|that summarizes the

state of the tree after the UpdatePath has been applied.

As a result, [the signature over the parent hash|in each member's leaf
effectively signs the subtree of the tree that hasn't been changed

since that leaf was last changed in an UpdatePath.

Problem 1: Guarantees described in imprecise prose.

12

Contribution: Fixing TreeSync's guarantees

7.9. Parent Hashes

parent hashes|capture information about how keys in the tree were
populated.

it computes and signs a|parent hash|that summarizes the
state of the tree after the UpdatePath has been applied.

the signature over the parent hash|in each member's leaf
effectively signs the subtree of the tree that hasn't been changed
since that leaf was last changed in an UpdatePath.

As a result,

Problem 1: Guarantees described in imprecise prose.

Problem 2: Guarantees not actually met by parent hash!

12

Contribution: Fixing TreeSync's guarantees

7.9. Parent Hashes

parent hashes|capture information about how keys in the tree were
populated.

it computes and signs a|parent hash|that summarizes the
state of the tree after the UpdatePath has been applied.

the signature over the parent hash|in each member's leaf
effectively signs the subtree of the tree that hasn't been changed
since that leaf was last changed in an UpdatePath.

As a result,

Problem 1: Guarantees described in imprecise prose. @_

CORRECTED
Problem 2: Guarantees not actually met by parent hash!

12

Contribution: Fixing a signature ambiguity attack

(7

TreeSync

sig = sign(sk, serializeT1(msg1))
verify(pk, sig, serializeT1(msgy))

- J

TreeDEM

sig = sign(sk, serializeT2(msgy))

verify(pk, sig, serializeT,(msgy))
= J

13

Contribution: Fixing a signature ambiguity attack

/ Same key \
7

TreeSync

sig = sign(sk, serializeT1(msg1))

verify(pk, sig, serializeT1(msgy))

= J

Ve

TreeDEM

sig = sign(sk, serializeT2(msgy))

verify(pk, sig, serializeT,(msgy))

= J

13

Contribution: Fixing a signature ambiguity attack

/ Same key \

~

TreeSync

sig = sign(sk, serializeT1(msg1))

verify(pk, sig, serializeT1(msgy))
L 4 J

Ve

TreeDEM

sig = sign(sk, serializeT2(msgy))

verify(pk, sig, serializeT,(msgy))
L A J

\ Different types —/

13

Ve

TreeSync

sig = sign(sk, serializeT1(msg1))

verify(pk, sig, serializeT1(msgy))
L 4 J

Contribution: Fixing a signature ambiguity attack

/ Same key \
7 (

~

TreeDEM

sig = sign(sk, serializeT2(msgy))

verify(pk, sig, serializeT,(msgy))
L A J

\ Different types —/

What if 3msg; msg,, serializer1(msg;) = serialize2(msg,)?

Contribution: Fixing a signature ambiguity attack

Ve

TreeSync

sig = sign(sk, serializeT1(msg1))

verify(pk, sig, serializeT1(msgy))
L 4 J

/ Same key \
7 (

TreeDEM

~

sig = sign(sk, serializeT2(msgy))

verify(pk, sig, serializeT,(msgy))

=

A

J

\ Different types —/

What if 3msg; msg,, serializer1(msg;) = serialize2(msg,)?
Bad interaction between TreeSync and TreeDEM!

13

Contribution: Fixing a signature ambiguity attack

/ Same key \
1 (

(7
TreeSync TreeDEM
sig = sign(sk, serializeT1(msg1)) sig = sign(sk, serializeT2(msgy))
verify(pk, sig, serializeT1(msgy)) verify(pk, sig, serializeT,(msgy))
L 4 J L A J

\ Different types —/

What if 3msg; msg,, serializer1(msg;) = serialize2(msg,)?
Bad interaction between TreeSync and TreeDEM! CORRECTED

A4

13

Contribution: Fixing a signature ambiguity attack

/ Same key \
1 (

(7
TreeSync TreeDEM
sig = sign(sk, serializeT1(msg1)) sig = sign(sk, serializeT2(msgy))
verify(pk, sig, serializeT1(msgy)) verify(pk, sig, serializeT,(msgy))
L 4 J L A J

\ Different types -/

What if 3msg; msg,, serializer1(msg;) = serialize2(msg,)?
Bad interaction between TreeSync and TreeDEM! CORRECTED

Attack found by doing proofs on a bit-precise specification, _@

thanks to executability and interoperability tests.

13

Conclusion

Our contributions:

» formally specify MLS decomposed into three sub-protocols:
TreeSync, TreeKEM, and TreeDEM

» prove the security of TreeSync in the Dolev-Yao model
» do proofs on an executable, interoperable specification
» found design flaws and submitted fixes to the MLS Working Group

Future work: security proofs for TreeKEM and TreeDEM ; prove efficient
implementations.

The MLS Working Group gladly welcomed these contributions, resulting
in a fruitful collaboration.

<[> https://github.com/Inria-Prosecco/treesync

) theophile.wallez@inria.fr ARTIFACT | ARTIFACT | ARTIFACT

EVALUATED | EVALUATED | EVALUATED
@ httpS://Www.twal‘org/ us‘enlx usenix usenix
W Otwallez

AVAILABLE REPRODUCED FUNCTIONAL

14

https://github.com/Inria-Prosecco/treesync
mailto:theophile.wallez@inria.fr
https://www.twal.org/
https://twitter.com/twallez

	What is Messaging Layer Security (MLS)
	Our contributions

