
TreeSync:
Authenticated Group Management for

Messaging Layer Security

TODO: insert here an easy to under-
stand yet impactful figure represent-
ing MLS (don’t forget to fill this in
before the final presentation!)

Théophile Wallez, Inria Paris
Jonathan Protzenko, Microsoft Research
Benjamin Beurdouche, Inria Paris, Mozilla
Karthikeyan Bhargavan, Inria Paris, Cryspen

1



What is Messaging Layer Security
(MLS)

2



Secure group messaging

https://www.nytimes.com/2020/06/11/style/signal-messaging-app-encryption-protests.html

time

compromise

secure

Forward secrecy

compromise

healing secure

Post-compromise security

3

https://www.nytimes.com/2020/06/11/style/signal-messaging-app-encryption-protests.html


Secure group messaging

https://www.nytimes.com/2020/06/11/style/signal-messaging-app-encryption-protests.html

time

compromise

secure

Forward secrecy

compromise

healing secure

Post-compromise security

3

https://www.nytimes.com/2020/06/11/style/signal-messaging-app-encryption-protests.html


Secure group messaging

https://www.nytimes.com/2020/06/11/style/signal-messaging-app-encryption-protests.html

time

compromise

secure

Forward secrecy

compromise

healing secure

Post-compromise security

3

https://www.nytimes.com/2020/06/11/style/signal-messaging-app-encryption-protests.html


Secure group messaging

https://www.nytimes.com/2020/06/11/style/signal-messaging-app-encryption-protests.html

time

compromise

secure

Forward secrecy

compromise

healing secure

Post-compromise security

3

https://www.nytimes.com/2020/06/11/style/signal-messaging-app-encryption-protests.html


Secure group messaging

https://www.nytimes.com/2020/06/11/style/signal-messaging-app-encryption-protests.html

time

compromise

secure

Forward secrecy

compromise

healing secure

Post-compromise security

3

https://www.nytimes.com/2020/06/11/style/signal-messaging-app-encryption-protests.html


Secure group messaging

https://www.nytimes.com/2020/06/11/style/signal-messaging-app-encryption-protests.html

time

Eve joins

secure

Forward secrecy

Eve leaves

healing secure

Post-compromise security

3

https://www.nytimes.com/2020/06/11/style/signal-messaging-app-encryption-protests.html


State of the art, before MLS

N devices
O(N2) Signal channels!
Slow for large N, e.g. N ≃ 1000

RFC 9420

Design constraints:
Secure, efficient, asynchronous,

dynamic groups

4



State of the art, before MLS

N devices
O(N2) Signal channels!
Slow for large N, e.g. N ≃ 1000

RFC 9420

Design constraints:
Secure, efficient, asynchronous,

dynamic groups

4



State of the art, before MLS

N devices
O(N2) Signal channels!
Slow for large N, e.g. N ≃ 1000

RFC 9420

Design constraints:
Secure, efficient, asynchronous,

dynamic groups

4



State of the art, before MLS

N devices
O(N2) Signal channels!
Slow for large N, e.g. N ≃ 1000

RFC 9420

Design constraints:
Secure, efficient, asynchronous,

dynamic groups

4



A complex problem

https://nebuchadnezzar-megolm.github.io/

Many performance / security tradeoffs
(https://inria.hal.science/hal-02425229/)

Protocol Performance Security

5

https://nebuchadnezzar-megolm.github.io/
https://inria.hal.science/hal-02425229/


A complex problem
https://nebuchadnezzar-megolm.github.io/

Many performance / security tradeoffs
(https://inria.hal.science/hal-02425229/)

Protocol Performance Security

5

https://nebuchadnezzar-megolm.github.io/
https://inria.hal.science/hal-02425229/


A complex problem
https://nebuchadnezzar-megolm.github.io/

Many performance / security tradeoffs
(https://inria.hal.science/hal-02425229/)

Protocol Performance Security

5

https://nebuchadnezzar-megolm.github.io/
https://inria.hal.science/hal-02425229/


A complex RFC

6



Our contributions

7



Contributions TL;DR

8



Contributions TL;DR

8



Contributions TL;DR

8



Contributions TL;DR

8



Contribution: Modularizing MLS

TreeSync: authenticated group synchronization
TreeKEM: efficient continuous group key establishment
TreeDEM: forward secure group messaging

9



Contribution: Modularizing MLS

TreeSync: authenticated group synchronization
TreeKEM: efficient continuous group key establishment
TreeDEM: forward secure group messaging

9



Contribution: Modularizing MLS

TreeSync: authenticated group synchronization
TreeKEM: efficient continuous group key establishment
TreeDEM: forward secure group messaging

9



Contribution: Formal proof of TreeSync

F∗ specification

Functional
correctness

proofs
(e.g. invariants)

Symbolic
implementation

Security proofs
(for TreeSync)

DY
∗

Concrete
implementation

Interoperability
tests

(4 implementations)

HACL ∗

Fi
x

at
ta

ck
s

Fi
x

bu
gs

1

2 3

10



Contribution: Formal proof of TreeSync

F∗ specification

Functional
correctness

proofs
(e.g. invariants)

Symbolic
implementation

Security proofs
(for TreeSync)

DY
∗

Concrete
implementation

Interoperability
tests

(4 implementations)

HACL ∗

Fi
x

at
ta

ck
s

Fi
x

bu
gs

1

2 3

10



Contribution: Formal proof of TreeSync

F∗ specification

Functional
correctness

proofs
(e.g. invariants)

Symbolic
implementation

Security proofs
(for TreeSync)

DY
∗

Concrete
implementation

Interoperability
tests

(4 implementations)

HACL ∗

Fi
x

at
ta

ck
s

Fi
x

bu
gs

1

2 3

10



Contribution: Formal proof of TreeSync

F∗ specification

Functional
correctness

proofs
(e.g. invariants)

Symbolic
implementation

Security proofs
(for TreeSync)

DY
∗

Concrete
implementation

Interoperability
tests

(4 implementations)

HACL ∗

Fi
x

at
ta

ck
s

Fi
x

bu
gs

1

2 3

10



Contribution: Formal proof of TreeSync

F∗ specification

Functional
correctness

proofs
(e.g. invariants)

Symbolic
implementation

Security proofs
(for TreeSync)

DY
∗

Concrete
implementation

Interoperability
tests

(4 implementations)

HACL ∗

Fi
x

at
ta

ck
s

Fi
x

bu
gs

1

2 3

10



Contribution: Formal proof of TreeSync

F∗ specification

Functional
correctness

proofs
(e.g. invariants)

Symbolic
implementation

Security proofs
(for TreeSync)

DY
∗

Concrete
implementation

Interoperability
tests

(4 implementations)

HACL ∗

Fi
x

at
ta

ck
s

Fi
x

bu
gs

1

2 3

10



Contribution: Fixing TreeSync’s invariants

def join_group(group):
if well_formed(group):

# ...
else:

raise MalformedGroupException

Desirable property: well_formed is an invariant under group modifications.

Actually, a well-formed group could become malformed!

11



Contribution: Fixing TreeSync’s invariants

def join_group(group):
if well_formed(group):

# ...
else:

raise MalformedGroupException

Desirable property: well_formed is an invariant under group modifications.

Actually, a well-formed group could become malformed!

11



Contribution: Fixing TreeSync’s invariants

def join_group(group):
if well_formed(group):

# ...
else:

raise MalformedGroupException

Desirable property: well_formed is an invariant under group modifications.

Actually, a well-formed group could become malformed!

11



Contribution: Fixing TreeSync’s guarantees

Problem 1: Guarantees described in imprecise prose.

Problem 2: Guarantees not actually met by parent hash!

12



Contribution: Fixing TreeSync’s guarantees

Problem 1: Guarantees described in imprecise prose.

Problem 2: Guarantees not actually met by parent hash!

12



Contribution: Fixing TreeSync’s guarantees

Problem 1: Guarantees described in imprecise prose.

Problem 2: Guarantees not actually met by parent hash!

12



Contribution: Fixing TreeSync’s guarantees

Problem 1: Guarantees described in imprecise prose.

Problem 2: Guarantees not actually met by parent hash!

12



Contribution: Fixing a signature ambiguity attack

TreeSync TreeDEM

sig = sign(sk, serializeT1(msg1))
verify(pk, sig, serializeT1(msg1))

sig = sign(sk, serializeT2(msg2))
verify(pk, sig, serializeT2(msg2))

Same key

Different types

What if ∃msg1msg2, serializeT1(msg1) = serializeT2(msg2)?
Bad interaction between TreeSync and TreeDEM!

Attack found by doing proofs on a bit-precise specification,
thanks to executability and interoperability tests.

13



Contribution: Fixing a signature ambiguity attack

TreeSync TreeDEM

sig = sign(sk, serializeT1(msg1))
verify(pk, sig, serializeT1(msg1))

sig = sign(sk, serializeT2(msg2))
verify(pk, sig, serializeT2(msg2))

Same key

Different types

What if ∃msg1msg2, serializeT1(msg1) = serializeT2(msg2)?
Bad interaction between TreeSync and TreeDEM!

Attack found by doing proofs on a bit-precise specification,
thanks to executability and interoperability tests.

13



Contribution: Fixing a signature ambiguity attack

TreeSync TreeDEM

sig = sign(sk, serializeT1(msg1))
verify(pk, sig, serializeT1(msg1))

sig = sign(sk, serializeT2(msg2))
verify(pk, sig, serializeT2(msg2))

Same key

Different types

What if ∃msg1msg2, serializeT1(msg1) = serializeT2(msg2)?
Bad interaction between TreeSync and TreeDEM!

Attack found by doing proofs on a bit-precise specification,
thanks to executability and interoperability tests.

13



Contribution: Fixing a signature ambiguity attack

TreeSync TreeDEM

sig = sign(sk, serializeT1(msg1))
verify(pk, sig, serializeT1(msg1))

sig = sign(sk, serializeT2(msg2))
verify(pk, sig, serializeT2(msg2))

Same key

Different types

What if ∃msg1msg2, serializeT1(msg1) = serializeT2(msg2)?

Bad interaction between TreeSync and TreeDEM!

Attack found by doing proofs on a bit-precise specification,
thanks to executability and interoperability tests.

13



Contribution: Fixing a signature ambiguity attack

TreeSync TreeDEM

sig = sign(sk, serializeT1(msg1))
verify(pk, sig, serializeT1(msg1))

sig = sign(sk, serializeT2(msg2))
verify(pk, sig, serializeT2(msg2))

Same key

Different types

What if ∃msg1msg2, serializeT1(msg1) = serializeT2(msg2)?
Bad interaction between TreeSync and TreeDEM!

Attack found by doing proofs on a bit-precise specification,
thanks to executability and interoperability tests.

13



Contribution: Fixing a signature ambiguity attack

TreeSync TreeDEM

sig = sign(sk, serializeT1(msg1))
verify(pk, sig, serializeT1(msg1))

sig = sign(sk, serializeT2(msg2))
verify(pk, sig, serializeT2(msg2))

Same key

Different types

What if ∃msg1msg2, serializeT1(msg1) = serializeT2(msg2)?
Bad interaction between TreeSync and TreeDEM!

Attack found by doing proofs on a bit-precise specification,
thanks to executability and interoperability tests.

13



Contribution: Fixing a signature ambiguity attack

TreeSync TreeDEM

sig = sign(sk, serializeT1(msg1))
verify(pk, sig, serializeT1(msg1))

sig = sign(sk, serializeT2(msg2))
verify(pk, sig, serializeT2(msg2))

Same key

Different types

What if ∃msg1msg2, serializeT1(msg1) = serializeT2(msg2)?
Bad interaction between TreeSync and TreeDEM!

Attack found by doing proofs on a bit-precise specification,
thanks to executability and interoperability tests.

13



Conclusion
Our contributions:
▶ formally specify MLS decomposed into three sub-protocols:

TreeSync, TreeKEM, and TreeDEM
▶ prove the security of TreeSync in the Dolev-Yao model
▶ do proofs on an executable, interoperable specification
▶ found design flaws and submitted fixes to the MLS Working Group

Future work: security proofs for TreeKEM and TreeDEM ; prove efficient
implementations.

The MLS Working Group gladly welcomed these contributions, resulting
in a fruitful collaboration.

https://github.com/Inria-Prosecco/treesync
theophile.wallez@inria.fr
https://www.twal.org/
@twallez

14

https://github.com/Inria-Prosecco/treesync
mailto:theophile.wallez@inria.fr
https://www.twal.org/
https://twitter.com/twallez

	What is Messaging Layer Security (MLS)
	Our contributions

