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What is Messaging Layer Security
(MLS)
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Secure group messaging

https://www.nytimes.com/2020/06/11/style/signal-messaging-app-encryption-protests.html
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State of the art, before MLS

N devices
O(N2) Signal channels!
Slow for large N, e.g. N ≃ 1000

RFC 9420

Design constraints:
Secure, efficient, asynchronous,

dynamic groups
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A complex problem

https://nebuchadnezzar-megolm.github.io/

Many performance / security tradeoffs
(https://inria.hal.science/hal-02425229/)

Protocol Performance Security
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A complex RFC
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Our contributions
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Contributions TL;DR
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Contribution: Modularizing MLS

TreeSync: authenticated group synchronization
TreeKEM: efficient continuous group key establishment
TreeDEM: forward secure group messaging
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Contribution: Formal proof of TreeSync
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Contribution: Fixing TreeSync’s invariants

def join_group(group):
if well_formed(group):

# ...
else:

raise MalformedGroupException

Desirable property: well_formed is an invariant under group modifications.

Actually, a well-formed group could become malformed!
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Contribution: Fixing TreeSync’s guarantees

Problem 1: Guarantees described in imprecise prose.

Problem 2: Guarantees not actually met by parent hash!
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Contribution: Fixing a signature ambiguity attack

TreeSync TreeDEM

sig = sign(sk, serializeT1(msg1))
verify(pk, sig, serializeT1(msg1))

sig = sign(sk, serializeT2(msg2))
verify(pk, sig, serializeT2(msg2))

Same key

Different types

What if ∃msg1msg2, serializeT1(msg1) = serializeT2(msg2)?
Bad interaction between TreeSync and TreeDEM!

Attack found by doing proofs on a bit-precise specification,
thanks to executability and interoperability tests.
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Conclusion
Our contributions:
▶ formally specify MLS decomposed into three sub-protocols:

TreeSync, TreeKEM, and TreeDEM
▶ prove the security of TreeSync in the Dolev-Yao model
▶ do proofs on an executable, interoperable specification
▶ found design flaws and submitted fixes to the MLS Working Group

Future work: security proofs for TreeKEM and TreeDEM ; prove efficient
implementations.

The MLS Working Group gladly welcomed these contributions, resulting
in a fruitful collaboration.

https://github.com/Inria-Prosecco/treesync
theophile.wallez@inria.fr
https://www.twal.org/
@twallez
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