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Design constraints:
Secure, efficient, asynchronous,
dynamic groups




A complex problem


https://nebuchadnezzar-megolm.github.io/
https://inria.hal.science/hal-02425229/

A complex problem

https://nebuchadnezzar-megolm.github.io/

[matrix] =

Upgrade now to address E2EE vulnerabilities
in matrix-js-sdk, matrix-ios-sdk and matrix-
android-sdk2

28.09.2022 17:41 — Security — Matthew Hodgson, Denis Kasak, Matrix Cryptography Team, Matrix Security Team


https://nebuchadnezzar-megolm.github.io/
https://inria.hal.science/hal-02425229/

A complex problem

https://nebuchadnezzar-megolm.github.io/

[matrix]

Upgrade now to address E2EE vulnerabilities
in matrix-js-sdk, matrix-ios-sdk and matrix-
android-sdk2

28.09.2022 17:41 — Security — Matthew Hodgson, Denis Kasak, Matrix Cryptography Team, Matrix Security Team

Many performance / security tradeoffs
(https://inria.hal.science/hal-02425229/)

‘ Protocol Create Add Remove Update Group | Update | Remove

end | Recv | Send | Reev | New Send Recv end Recv | Agreement | PPCS | PACS
Sender Keys [18] | N N 1 1 N - - - B No No No
Chained mKEMT | N 1 1 1 1 N 1 N 1 Yes Yes Yes
2-KEM Trees ™ N | log®) | log®) | log®N) | log®N) | _log®) | log®™) | log®™) | log(\) Yes Yes No
ART [7] N[ log(N) | Tog®™) | log(™) | Tog(N) - - Tlog(N) | log(™) Yes Yes No
TreeKEM T N[ log(™N) | log™) 1 1 Tog(N) 1 Tog(N) 1 Yes Yes No
TreeKEMp * N 1 1 1 1 log(N)..N 1 TogN)..N 1 Yes Yes No~
TreeKEMp.s * N [ 1 1 N | log™)..N 1 Tog(N). .N 1 Yes Yes Yes
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Conclusion

Our contributions:

» formally specify MLS decomposed into three sub-protocols:
TreeSync, TreeKEM, and TreeDEM

» prove the security of TreeSync in the Dolev-Yao model
» do proofs on an executable, interoperable specification
» found design flaws and submitted fixes to the MLS Working Group

Future work: security proofs for TreeKEM and TreeDEM ; prove efficient
implementations.

The MLS Working Group gladly welcomed these contributions, resulting
in a fruitful collaboration.

<[> https://github.com/Inria-Prosecco/treesync

) theophile.wallez@inria.fr ARTIFACT | ARTIFACT | ARTIFACT

EVALUATED | EVALUATED | EVALUATED
@ httpS://Www.twal‘org/ us‘enlx usenix usenix
W Otwallez

AVAILABLE  REPRODUCED FUNCTIONAL
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